ULTRAFILTERS AND ALMOST DISJOINT SETS. II

BY KAREL PRIKRY

Communicated by W. Wistar Comfort, August 6, 1974

Unless otherwise stated, κ is an arbitrary infinite regular cardinal. For every infinite cardinal κ, $\mu\kappa$ is the family of uniform ultrafilters on κ. Our main result is:

Theorem 1. Suppose that $2^\kappa = \kappa^+$. Then for every $U \in \mu\kappa$ there is a family $\{a_x: x \in U\}$ such that: for every $x \in U$, $a_x = \kappa$; and for every $x, y \in U$ with $x \neq y$, $|a_x \cap a_y| < \kappa$.

This answers a question of Comfort communicated privately to the author and partially answers a question of Hindman [5]. It is still open whether Theorem 1 holds for singular κ as well. The hypothesis $2^\kappa = \kappa^+$ cannot be outright removed, since by [1] it is consistent with ZFC that there is no $A \subseteq P(\kappa)$ such that $|A| = 2^\kappa$, $|a| = \kappa$ for every $a \in A$, and $|a \cap b| < \kappa$ for every $a, b \in A$ with $a \neq b$. See [4], [5] and [8] for other relevant results.

Definition 1. For $A \subseteq P(\kappa)$ and ideal $I \subseteq P(\kappa)$, I is said to be dense in A modulo sets of power $< \kappa$ if for each $x \in A$ such that $|x| = \kappa$, there is some $y \in I$ with $y \subseteq x$ and $|y| = \kappa$. For brevity we shall write "I is dense in A mod($< \kappa$)". I is dense mod($< \kappa$) if I is dense in $P(\kappa)$ mod($< \kappa$).

"I is λ-complete" is defined as in [7].

Theorem 2. For every $U \in \mu\kappa$ there is a κ-complete ideal $I \subseteq P(\kappa) - U$ such that I is dense mod($< \kappa$).

Theorem 1 follows from Theorem 2 by induction on ordinals $< \kappa^+$, $a_x(x \in U)$ being chosen to belong to I. See [8, Theorem 1].

AMS (MOS) subject classifications (1970). Primary 02K25, 54D35.

Key words and phrases. Ultrafilter-uniform, regular, weakly selective, ideal-κ-complete, dense mod($< \kappa$), function-almost one-to-one, unbounded mod U.

Research supported by NSF grant GP-43841.
Theorem 2 for $\kappa = \omega$ is trivial—let $I = P(\omega) - U$. Thus from now on, $\kappa > \omega$. Theorem 2 follows from Lemma 1 and Lemma 1 clearly follows from Lemmas 2 and 3.

Lemma 1. If $U \in \mu\kappa$, then there is a κ-complete ideal $I \subseteq P(\kappa) - U$ which is dense in U mod($< \kappa$).

To prove Theorem 2, let I be as in Lemma 1 and set $x \in \bar{I}$ iff there are x_0, x_1 such that $x = x_0 \cup x_1, x_0 \subseteq I$ and there is no $y \in I$ with $y \subseteq x_1$ and $|y| = \kappa$. Then \bar{I} is as required.

For $f, g \in \kappa\kappa$ we shall write $f \sim g \pmod U$ or $f < g \pmod U$ if \{\rho: f(\rho) = g(\rho)\} \subseteq U$ or \{\rho: f(\rho) < g(\rho)\} \subseteq U respectively.

Definition 2 [2]. $U \subseteq \mu\kappa$ is regular if there is a family $X = \{x_\xi: \xi \in \kappa\} \subseteq U$ such that for every infinite $S \subseteq \kappa$, $\bigcap\{x_\xi: \xi \in S\} = 0$.

Definition 3 [6]. $f \in \kappa\kappa$ is almost one-to-one if for each $\rho \in \kappa$, $|f^{-1}\{\rho}\}| < \kappa$.

Definition 4. $f \in \kappa\kappa$ is bounded mod U if for some $\alpha \in \kappa$, \{\rho \in \kappa: f(\rho) < \alpha\} \subseteq U$. Otherwise f is unbounded mod U.

Definition 5. $U \subseteq \mu\kappa$ is weakly selective if for every $f \in \kappa\kappa$ which is unbounded mod U there is an almost one-to-one $g \in \kappa\kappa$ such that $f \sim g \pmod U$.

Lemma 2. If $U \in \mu\kappa$ is either regular or not weakly selective, then there is a κ-complete $I \subseteq P(\kappa) - U$ which is dense in U mod($< \kappa$).

Proof. See [8, Theorems 5 and 11]. In outline, the proofs are as follows. Suppose first that U is regular. Let $X = \{x_\xi: \xi \in \kappa\}$ be as in Definition 2. Set

$$I = \{y \subseteq \kappa: \exists \eta < \kappa \forall \xi(\eta < \xi, \eta \rightarrow |x_\xi \cap y| < \kappa)\}.$$

Then I is the desired ideal.

If U is not weakly selective, fix $f \in \kappa\kappa$ unbounded mod U and such that there is no almost one-to-one g with $g \sim f \pmod U$. Set

$$I = \{y \subseteq \kappa: \forall \rho < \kappa(|y \cap f^{-1}\{\rho\}| < \kappa)\}.$$

Lemma 3. If $U \in \mu\kappa$ is weakly selective and not regular, then there is a κ-complete ideal $I \subseteq P(\kappa) - U$ which is dense in U mod($< \kappa$).
The next crucial lemma needed in the proof of Lemma 3 is due to A. Kanamori [6].

Lemma 4 [6]. If \(U \in \mu \kappa \) is not regular then there is a least \(\text{(mod } U) \) almost one-to-one function \(f \in \kappa^{\kappa} \).

Proof in outline. Suppose that Lemma 4 is false. One can then construct by induction almost one-to-one functions \(f_\alpha \in \kappa^{\kappa} \) \((\alpha \in \kappa) \) such that for all \(\alpha < \beta < \kappa \), \(f_\beta < f_\alpha \) \(\text{(mod } U) \), and in addition, if \(\beta \) is limit, then for all \(\alpha < \beta \) and all \(\rho \in \kappa \), \(f_\beta(\rho) \leq f_\alpha(\rho) \). We now define sets \(x_\alpha \in U \) \((\alpha < \kappa, \alpha \text{ successor}) \) as follows. If \(\alpha = \gamma + n \) where \(\gamma < \kappa, \gamma \) is limit and \(1 \leq n \in \omega \), then

\[
x_\alpha = \{ \rho < \kappa : \forall m \in \omega (0 \leq m < n \rightarrow f_\alpha(\rho) < f_{\gamma + m}(\rho)) \}.
\]

It can be shown that \(\{ x_\alpha : \alpha < \kappa, \alpha \text{ successor} \} \) regularizes \(U \).

Lemma 5. If \(U \in \mu \kappa \) is weakly selective and not regular then there is a least \(\text{(mod } U) f \in \kappa^{\kappa} \) unbounded \(\text{mod } U \).

Proof. Immediate from Lemma 4.

Lemma 6. (Scott, see [7, Theorem 1.8]). Let \(U \in \mu \kappa \) and \(f \in \kappa^{\kappa} \) be as in Lemma 5. Set \(V = \{ x \subseteq \kappa : f^{-1}(x) \in U \} \). Then \(V \in \mu \kappa \) and the identity is a least \(\text{(mod } V) \) function unbounded \(\text{mod } V \). Moreover \(V \) extends the filter of closed unbounded subsets of \(\kappa \).

Sketch of the proof of Lemma 3. Let \(U, f \) and \(V \) be as in Lemma 6. Let \(J \) be the ideal of those \(x \subseteq \kappa \) such that \(\kappa - x \) contains a closed unbounded subset of \(\kappa \). By Lemma 6, \(J \subseteq \mathcal{P}(\kappa) - V \). It is well known that \(J \) is \(\kappa \)-complete and dense \(\text{mod}(< \kappa) \). Set

\[
I = \{ y \subseteq \kappa : \exists x \in J(y \subseteq f^{-1}(x)) \}.
\]

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540