THE NUMBER OF ZEROES OF
AN ANALYTIC FUNCTION IN A CONE

BY CARLOS A. BERENSTEIN

Communicated by F. W. Gehring, September 19, 1974

It is not possible to estimate the number of zeroes of an analytic function of several variables defined in a cone by reducing the problem to the 1-dimensional case via Crofton's formula or similar tools of Nevanlinna theory (see e.g. [4]). We propose to extend the classical result due to Pfluger and Levin [3] using a potential theory approach.

Let S^{m-1} be the unit sphere in the euclidean space \mathbb{R}^m, D an open subset of S^{m-1}, ∂D smooth and of bounded curvature. For $0 < r < \infty$ we set $D_r = \{x: x \in D, 0 < t < r\}$. Denote by $\rho_1 = \rho_1(D)$ the positive number such that $\rho_1(\rho_1 + m - 2)$ is the first eigenvalue of the Laplace-Beltrami operator in D for the Dirichlet problem. Thus we have

THEOREM. Let u be a subharmonic function in D_r, such that $u \neq -\infty$, $u(x) \leq A + B|x|^p$ for every $x \in D_r$. If $\rho > \rho_1$, D' is an arbitrary open set, $\overline{D'} \subseteq D$, then there exists a constant $C = C(D', \rho)$ such that

$$\lim_{r \to 0} r^{-\rho - m + 2} \int_{D'_r} \Delta u \leq CB.$$

If we identify C^n with \mathbb{R}^{2n} and f is an analytic function in D, then $\log|f(z)|^2$ is subharmonic and

$$\sigma_D(r) = (n - 1)! \int_{D'_r} \Delta \log|f(z)|^2$$

represents the euclidean area of the variety $\{z \in D_r: f(z) = 0\}$. For $n = 1$, it is just the number of zeroes of f in D_r; see [2]. Therefore we obtain the following

Key words and phrases. Several complex variables, potential theory.

1Partly supported by NSF Grant GP 38882.
COROLLARY. Let \(f \) be a nonzero analytic function in \(D_\infty \) satisfying \(|f(z)| \leq A \exp(B|z|^\rho) \) for some \(\rho > \rho_1 \); then for any \(D' \) open, \(\overline{D'} \subseteq D \), we have

\[
\lim_{r \to \infty} \sigma_{D'}(r)r^{-\rho-m+2} \leq CB.
\]

The details of the proof and related results appear in [1], here we just present the bare bones of the proof of the theorem. First, we can show that

(i) the harmonic measure of \(S_r = \{rx: x \in D\} \) at a fixed point \(x_0 \), behaves like \(O(r^{-\rho_1}) \),

(ii) if \(G_r(x) \) is the Green function of \(D_r \) with pole at \(x_0 \), \(0 < \epsilon < 1 \) fixed, then

\[
G_r(x) \geq \text{const } r^{-\rho_1-m+2}, \quad r \to \infty
\]

for \(x \in D_{\epsilon r}, |x| > r_0 \),

(iii) we can reduce the general case to the one in which \(u \leq 0 \) on \(\partial D_\infty \).

Then we apply Green's formula, assuming \(u(x_0) \neq -\infty \),

\[
\int_{D_r} G_r(x)\Delta u = -u(x_0) + \int_{\partial D_r} u(x) \frac{\partial G_r}{\partial v}(x)
\]

(\(\partial/\partial v \) derivative in the direction of the inner normal). By (i), (iii) and the assumption on \(u \) we have

\[
\int_{D_r} G_r(x)\Delta u = O(r^{\rho_1}) \quad \text{as } r \to \infty.
\]

Applying (ii), the conclusion of the Theorem follows.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742