ROUND HANDLES AND HOMOTOPY OF NONSINGULAR VECTOR FIELDS

BY DANIEL ASIMOV

Communicated by S. S. Chern, October 24, 1974

Introduction. We consider nonsingular vector fields on compact connected C^∞ manifolds. The question is: What orbit structures occur in which homotopy classes of nonsingular vector fields? We show that in dimensions 4 and greater, a nonsingular Morse-Smale (NMS) vector field occurs in each homotopy class. Under the additional assumption that the first Betti number of the manifold is nonzero, we show that a nonsingular volume-preserving (NVP) vector field occurs in each homotopy class. These results are based on the round handle decomposition theorem, interesting in its own right as a structure theorem for manifolds whose Euler characteristic is 0.

Let M be a compact manifold whose boundary has been partitioned into two unions of components: $\partial M = \partial_- M \cup \partial_+ M$, $\partial_- M \cap \partial_+ M = \emptyset$. Then the following are equivalent:

1. $\chi(\partial_- M) = \chi(M)$.
2. $\chi(\partial_+ M) = \chi(M)$.
3. There exists a nonsingular vector field on M pointing inward on $\partial_- M$ and outward on $\partial_+ M$.

DEFINITION. The pair $(M, \partial_- M)$ will be called a flow manifold if 1, 2, and 3 above are true. This does not exclude the possibility, of course, that $\partial_- M$, $\partial_+ M$, or ∂M may be empty.

DEFINITION. A nonsingular Morse-Smale (NMS) vector field V on the flow manifold $(M, \partial_- M)$ is one which satisfies (a), (b) and (c) below:

(a) V has nonwandering set equal to a finite number of closed orbits, each having a hyperbolic Poincaré map.

(b) The stable manifold (inset) of one closed orbit is transversal to the unstable manifold (outset) of any other closed orbit.

(c) V points inward on $\partial_- M$ and outward on $\partial_+ M$.

DEFINITIONS. A round handle of index k (and dimension n) is a copy
of $R_k = S^1 \times D^k \times D^{n-k-1}$. The attaching region $\partial_- R_k$ of R_k is the submanifold $S^1 \times S^{k-1} \times D^{n-k-1}$ of ∂R_k, where $S^{k-1} = \partial D^k$.

Theorem 1 (Round Handle Decomposition Theorem). Let $(M^n, \partial_- M)$ be a flow manifold with $n \geq 4$. Then M admits a decomposition of the form

$$M = (\partial_- M \times I) + R_0^1 + \cdots + R_0^\alpha + R_1^1 + \cdots + R_{n-1}^\alpha.$$

This means that each R_k^l is attached via a diffeomorphism of $\partial_- R_k$ to the boundary of the previous stuff, but never to $\partial_- M \times \{0\}$. If we further assume that $\partial_- M \neq \emptyset$ and $\partial_+ M \neq \emptyset$, we may write

$$M = (\partial_- M \times I) + R_1^1 + \cdots + R_{n-2}^\beta,$$

i.e. there exists a round handle decomposition avoiding round handles of extreme indices.

Corollary 1. Let $(M^n, \partial_- M)$ be a flow manifold with $n \geq 4$. Then $(M, \partial_- M)$ admits an NMS vector field. If we further assume that $\partial_- M \neq \emptyset$ and $\partial_+ M \neq \emptyset$, then $(M, \partial_- M)$ possesses an NMS vector field with no source or sink closed orbits.

Theorem 2. Let V be a nonsingular vector field on the flow manifold $(M^n, \partial_- M)$ pointing inward on $\partial_- M$ and outward on $\partial_+ M$. Assume M is orientable and $n \geq 4$. Then V is homotopic rel ∂M (through nonsingular vector fields) to an NMS vector field. If further $\partial_- M \neq \emptyset$ and $\partial_+ M \neq \emptyset$ then V is homotopic rel ∂M to an NMS vector field with no sources or sinks.

Theorem 3. Let M^n be compact, connected, and orientable with $\chi(M) = 0$, $n \geq 4$, and $H^1(M) \neq 0$. Then any nonsingular vector field V on M is homotopic to a field V_1 which preserves some smooth nonzero volume form ω on M (which may be preassigned).

Proof (Sketch). Using $H^1(M) \neq 0$ we first find a compact, connected, oriented submanifold $i: N^{n-1} \subseteq M$ with $i_*[N] \neq 0$ in $H_{n-1}(M)$. By surgering N we may find a homologous submanifold N' and a vector field V' homotopic to V such that V' is nowhere tangent to N'. Then cutting M open along N' gives us a flow manifold \tilde{M}, and V' becomes a vector field \tilde{V} on \tilde{M}. By Theorem 2, \tilde{V} is homotopic rel $\partial \tilde{M}$ to an NMS vector field \tilde{V}_1 on \tilde{M} having no sources or sinks. This last property permits finding (one round handle at a time) a smooth nonzero volume $\tilde{\omega}$ on \tilde{M} preserved by \tilde{V}_1. By carefully regluing
\(\tilde{M} \) to obtain \(M \) once again, \(\tilde{V}_1 \) becomes a smooth nonsingular vector field \(V_1 \) (which is not NMS), and \(\tilde{\omega} \) becomes a smooth nonzero volume \(\omega \) on \(M \) preserved by \(V_1 \). The form \(\omega \) may as well have been preassigned, since Moser [4] shows any two volume forms are equivalent up to constant multiple under a diffeomorphism of \(M \) isotopic to the identity.

Remark. Theorem 3 fails on the 2-torus \(T^2 \).

REFERENCES

2. ———, Homotopy of nonsingular vector fields (preprint).

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455