A RADIAL MULTIPLIER AND
A RELATED KAKEYA MAXIMAL FUNCTION

BY ANTONIO CORDOBA

Communicated by Alberto Calderón, November 11, 1974

In this paper we state some results for a maximal function and a Fourier multiplier that are connected with the Bochner-Riesz spherical summation of multiple Fourier series (see Fefferman [3], [5]). Our purpose will be to get sharp estimates for the norm of these operators in dimension two. Proofs will appear elsewhere [2].

Let \(N \geq 1 \) be a real number. By a rectangle of eccentricity \(N \) we mean a rectangle \(R \) such that

\[
\frac{\text{Length of the bigger side of } R}{\text{Length of the smaller side of } R} = N.
\]

We will define the direction of \(R \) as the direction of its bigger side.

Given a locally integrable function \(f \) we consider the maximal function

\[
Mf(x) = \sup_{x \in R} \frac{1}{|R|} \int_R |f(y)| \, dy,
\]

where the "Sup" is taken over rectangles of eccentricity \(N \), but arbitrary direction.

Theorem 1. The sublinear operator \(M \) is bounded in \(L^2(\mathbb{R}^2) \) and there exists a constant \(C \), independent of \(N \), such that

\[
\||Mf||_2 \leq C(\log 3N)^2 \|f\|_2.
\]

Suppose that \(m_0 \) is a smooth function on \(R \) with support on \((-1, 1)\) and let \(m(r) = m_0(\delta^{-1}(r - 1)) \), where \(\delta > 0 \) is a small number.

Consider the Fourier multiplier defined by

\[
\hat{Mf}(\xi) = m(|\xi|)\hat{f}(\xi), \quad f \in C_c^\infty(\mathbb{R}^2).
\]

Theorem 2. There exists a constant \(C \), independent of \(\delta \), such that...
\[\|Tf\|_4 \leq C \log \delta^{5/4} \|f\|_4, \quad \forall f \in C_0^\infty (\mathbb{R}^2). \]

Our proofs of Theorems 1 and 2 are made in the spirit of Cotlar's lemma. In particular the support of the kernel of \(T \) can be decomposed into a family of rectangles of eccentricity \(\delta^{-1/4} \) and the convolution operators, obtained by restricting the kernel to these rectangles, are "almost orthogonal".

Theorem 2 can be applied to get Bochner-Riesz summability below the critical index, in dimension two.

Corollary 3 (Carleson-Sjolin-Fefferman-Hörmander). The operator \(T_{\lambda} \) defined by \(\hat{T}_{\lambda}(\xi) = m_{\lambda}(\xi)\hat{\varphi}(\xi) \), where \(m_{\lambda}(\xi) = (1 - |\xi|^2)^{\lambda} \) if \(|\xi| \leq 1 \) and \(m_{\lambda}(\xi) = 0 \) otherwise, is bounded in \(L^p(\mathbb{R}^2) \) if

\[\frac{4}{3 + 2\lambda} < p < \frac{4}{1 - 2\lambda}, \quad \frac{1}{2} > \lambda > 0. \]

To see this we define a partition of unity on \((0, 1)\) as follows: For every \(n, h_n \) is a smooth function with support on \((1 - 2^{-n+1}, 1 - 2^{-n-1})\) such that \(|D^p h_n(r)| \leq A_p 2^{np} \) (with \(A_p \) independent of \(n \)) and \(\sum h_n(r) = 1 \) on \((0, 1)\). Then \(m_{\lambda}(\xi) = \sum m_{\lambda}(\xi) h_n(|\xi|) \). If we apply Theorem 2 to the operator \(T_{\lambda}^n \) defined by the multiplier \(m_{\lambda}(\xi) h_n(|\xi|) \) we get that \(\|T_{\lambda}^n f\|_4 \leq C 2^{-n\lambda} n^{5/4} \|f\|_4 \). And then, Corollary 3 can be deduced from this estimate by standard arguments of interpolation, duality and adding a geometric series.

Remark. Theorem 2 can be used to prove a sharper version of Corollary 3 i.e., suppose that \(m \) is a smooth function on \((0, 1)\) such that it behaves like

\[\left(\log \frac{1}{1 - |x|} \right)^{-t} \text{ near } |x| = 1. \]

Then \(m \) is a multiplier for \(L^p(\mathbb{R}^2) \), \(4/3 < p < 4 \) provided that \(t > 9/4 \).

I am deeply grateful to Professor Charles Fefferman for his many comments and criticisms, without which I could not have proved these results.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

Current address: Department of Mathematics, Princeton University, Princeton, New Jersey 08540