1. Shape. We give a solution to the following

Problem. Give necessary and sufficient conditions for a compactum Z to have the shape of (A) a complex or (B) a finite complex.

Problem B makes sense in Borsuk's shape theory for compacta [2] but in order to give meaning to Problem A, we must extend Borsuk's theory to include noncompact complexes. A particularly simple treatment is in [7]. Alternatively one can replace "complex" by "ANR" in Problem A, and use Fox’s extension to metric spaces [9].

It is desirable that the conditions in Problems A and B be intrinsic. The following partial solution to Problem B is in [10]: a finite-dimensional 1-UV compactum has the shape of a finite complex if and only if its Čech cohomology with integer coefficients is finitely generated. But without the hypothesis 1-UV, the condition offered in [10] is not an intrinsic one.

Now for our solution. First some notation. If (Z, z) is a pointed connected compact subset of a euclidean space E, let $\{(X_\alpha, z)\}$ be the inverse system of all connected open neighborhoods of Z in E, pointed by z and bonded by inclusion. Regarding $\{(X_\alpha, z)\}$ as an object of pro-# let $\text{pro} \pi_k(Z, z)$ be the pro-group $\{\pi_k(X_\alpha, z)\}$; let $\tilde{\pi}_k(Z, z)$ be its inverse limit (the kth shape group of (Z, z)). Let $\tilde{K}^0(G)$ denote the reduced projective class group of the group G (see p. 64 of [12]).

Theorem 1 [8]. Let (Z, z) be as above. The following are equivalent:

(i) $\text{pro} \pi_k(Z, z)$ is isomorphic to $\tilde{\pi}_k(Z, z)$ in pro-groups for each $k \geq 1$; (ii) (Z, z) has the pointed shape of a pointed complex of dimension max $\{3, \dim Z\}$; (iii) (Z, z) is dominated in pointed shape by a pointed finite complex; (iv) (Z, z) is movable and the natural topology on $\tilde{\pi}_k(Z, z)$ is discrete for each $k \geq 1$; (v) (Z, z) is a pointed FANR. Furthermore, Z has the shape

1Supported in part by NSF Grant PO38761.
of a finite complex if and only if an intrinsically defined "Wall obstruction"
\[w(Z, z) \in \tilde{K}^0(\tilde{\pi}_1(Z, z)) \] vanishes. All possible Wall obstructions occur among two-dimensional compacta.

Movable is defined in [4]; (iv) is explained in [6]; FANR is defined in [3]. Note that if \(\tilde{\pi}_1(Z, z) \) is free or free abelian, \(w(Z, z) = 0 \).

2. Pro-homotopy. Shape is the "inverse limit" of pro-homotopy and the above results are proved by means of new theorems in pro-homotopy: among them a Whitehead theorem (Theorem 2) and a stability theorem (Theorem 3).

If \(C \) is category, let pro-\(C \) be the category whose objects are inverse systems in \(C \) indexed by directed sets, and whose morphisms are as described in the Appendix to [1]. An object of pro-\(C \) indexed by the natural numbers is a tower in \(C \). Let \(CW_0 \) be the category of pointed connected (CW) complexes and pointed maps; let \(H_0 \) be the corresponding homotopy category. We suppress base points. If \(X = \{X_\alpha\} \) is in pro-CW\(_0 \) or pro-H\(_0 \), CW-dim \(X = \sup\{\dim X_\alpha\} \); h-dim \(X = \inf\{\text{CW-dim } Y | Y \text{ is isomorphic to } X \text{ in pro-} H_0 \} \). \(X \) is compact if each \(X_\alpha \) is a finite complex. \(\pi_k(X) \) is the pro-group \(\{\pi_k(X_\alpha)\} \); \(\tilde{\pi}_k(X) \) is its inverse limit group. A weak equivalence is a morphism inducing isomorphisms on \(\pi_k \) for all \(k \geq 1 \).

Theorem 2 is an extension of results in [11].

Theorem 2 [8]. Let \(g: X \to Y \) be a morphism of pro-CW\(_0 \) and let \(n = \max\{1 + \text{CW-dim } X, \text{CW-dim } Y\} < \infty \). Suppose \(g#: \pi_k(X) \to \pi_k(Y) \) is an isomorphism for \(k \leq n \) and has a right inverse for \(k = n + 1 \). Then \(g \) induces an isomorphism of pro-H\(_0 \). If \(X \) and \(Y \) are towers, \(g \) need only be a morphism of pro-H\(_0 \).

Theorem 3 uses Theorem 2 together with [12].

Theorem 3 [8]. Let \(X \) be a tower in \(H_0 \). (i) There exist a pointed complex \(Q \) and a weak equivalence \(q: Q \to X \) in pro-CW\(_0 \) if and only if \(\pi_k(X) \) is isomorphic in pro-groups to \(\tilde{\pi}_k(X) \) for all \(k \geq 1 \). In case (i) holds we have: (ii) \(Q \) can have dimension \(\max\{3, \text{h-dim } X\} \) and if \(\text{h-dim } X = 1 \), \(Q \) can be a bouquet of circles; (iii) if CW-dim \(X < \infty \), \(q \) induces an isomorphism in pro-\(H_0 \); (iv) if CW-dim \(X < \infty \) and \(X \) is compact, \(Q \) is dominated in \(H_0 \) by a finite complex, and \(X \) is isomorphic to a (pointed) finite complex \(P \) if and only if an intrinsically defined "Wall obstruction" \(w(X) \in \tilde{K}^0(\tilde{\pi}_1(X)) \).
vanishes: if \(w(X) = 0 \), \(\dim P = \dim Q \); (v) all possible Wall obstructions occur among towers of \(CW \)-dim 2.

REFERENCES

