A RESTRICTION THEOREM FOR THE FOURIER TRANSFORM

BY PETER A. TOMAS

Communicated by Harry Kesten, October 24, 1974

Let \(f \) be a Schwartz function on \(\mathbb{R}^n \), and let \(\hat{f}(\theta) \) denote the restriction of the Fourier transform of \(f \) to the unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \). We prove

Theorem. If \(f \) is in \(L^p(\mathbb{R}^n) \) for some \(p \) with \(1 < p < 2(n + 1)/(n + 3) \), then

\[
\int_{S^{n-1}} |\hat{f}(\theta)|^2 \, d\theta \leq c_p \|f\|_p^2.
\]

Proof.

\[
\int |\hat{f}(\theta)|^2 \, d\theta = \int f * \overline{f}(x) \, d\theta(x) = \int f(x) \, \overline{\hat{f}(x)} \, dx \leq \|f\|_p \|\overline{\hat{f}} \ast f\|_p,
\]

for conjugate indices \(p \) and \(p' \). Thus it suffices to prove that the operator given by convolution with \(\overline{\hat{f}} \) is bounded from \(L^p \) to \(L^{p'} \) for \(p \) in the appropriate range. Let \(K(x) \) be a radial Schwartz function with \(K(x) = 1 \) for \(|x| < 100 \), and let \(T_k(x) = (K(x/2^k) - K(x/2^{k-1})) \, \overline{\hat{f}(x)} \). It suffices to show there exists \(\varepsilon = \varepsilon(p) > 0 \) such that \(\|T_k \ast f\|_{p'} \leq C 2^{-\varepsilon k} \|f\|_p \). This follows from interpolating the estimates \(\|T_k \ast f\|_{\infty} \leq C 2^{-(n-1)k/2} \|f\|_1 \) and \(\|T_k \ast f\|_2 \leq 2^k \|f\|_2 \).

Professor E. M. Stein has extended the range of this result to include \(p = 2(n + 1)/(n + 3) \). His proof uses complex interpolation of the operators given by convolution with the functions \(B_\alpha(x) = J_\alpha(2\pi|x|)/|x|^\alpha \). Then \(\hat{\theta}(x) = B_{(n-2)/2}(x) \).

A great deal was previously known about such restriction theorems. E. M. Stein originally established the theorem for \(1 \leq p < 4n/(3n + 1) \). For \(n = 2 \), this was extended by Fefferman and Stein [2] to the range \(1 \leq p < 6/5 \). P. Sjolin (see [1]) proved the theorem for \(n = 3 \) and \(1 \leq p < 4/3 \). Finally, A. Zygmund [3] determined for two dimensions all \(p \) and \(q \) such that the Fourier transform of an \(L^p \) function restricts to \(L^q(S^1) \). Since a

very simple homogeneity argument shows that the theorem fails for
\(p > 2(n + 1)/(n + 3) \), the present result, together with the result of Stein,
represent the optimal estimate of this sort.

I am deeply grateful to Professor A. W. Knapp whose many comments
and criticisms were invaluable in proving this result.

REFERENCES
1. L. Carleson and P. Sjolin, Oscillatory integrals and a multiplier problem for
the disc, Studia Math. 44 (1972), 287–299.
2. C. Fefferman, Inequalities for strongly singular convolution operators, Acta
3. A. Zygmund, On Fourier coefficients and transforms of functions of two vari­