CORRIGENDUM, VOLUME 79

P. Ponomarev, Class numbers of definite quaternary forms with nonsquare discriminant, pp. 594–598.
p. 595, line 10, replace "nd > 3" by "nd ≠ 1, 3"
p. 596, line 17, after "nd > 3," insert "nd ≠ D/2,"; replace "d < D^{1/2}" by "d is odd"

CORRIGENDUM, VOLUME 80

Norman Levinson, Zeros of derivative of Riemann’s z-function, pp. 951–954.

The number 0.1414 appearing on the right of the last displayed inequality of [1] is too large. A trivial calculation shows it can be replaced by 0.1410 which yields a minor improvement in the final result. (Lowell Schoenfeld informs me that taking \(R = 1.08 \), instead of 1.1, leads to the improved lower bound of 0.7181792 for the proportion of zeros on \(\xi(s) \) on \(\sigma = \frac{1}{2} \). Presumably a semioptimal mollifier as in [2] would yield a better improvement.)

The second displayed formula of [1, p. 953] should be replaced by

\[
\int_T^{T+U} \log |\psi G(a + it)| \, dt \leq U \log \left(\frac{1}{U} \int_T^{T+U} |\psi G(a + it)| \, dt \right).
\]

The integral on the right is then dominated by the sum of a main term and minor terms. The Schwarz inequality is then used on the main term to get a term of the form

\[
\left(\frac{1}{U} \int_T^{T+U} |\psi H(a + it)|^2 \, dt \right)^{1/2}.
\]

REFERENCES

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Copyright © 1975, American Mathematical Society