The maximum size of an independent set in a nonplanar graph
Authors:
Michael O. Albertson and Joan P. Hutchinson
Journal:
Bull. Amer. Math. Soc. 81 (1975), 554-555
MSC (1970):
Primary 05C10, 55A15; Secondary 05C15
DOI:
https://doi.org/10.1090/S0002-9904-1975-13735-9
MathSciNet review:
0364012
Full-text PDF
References | Similar Articles | Additional Information
- 1. M. O. Albertson, Finding an independent set in a planar graph, Graphs and Combinatorics (R. Bari and F. Harary, editors), Springer-Verlag, New York, 1974. MR 369123
- 2. M. O. Albertson, A lower bound for the independence number of a planar graph, J. Combinatorial Theory Ser. B (to appear). MR 424599
- 3. C. Berge, Graphs and hypergraphs, Dunod, Paris, 1970. MR 898652
- 4. G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. U. S. A. 60 (1968), 438-445. MR 37 #3959. MR 228378
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 05C10, 55A15, 05C15
Retrieve articles in all journals with MSC (1970): 05C10, 55A15, 05C15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1975-13735-9