Monodromy groups for higher-order differential equations
Author:
Dennis A. Hejhal
Journal:
Bull. Amer. Math. Soc. 81 (1975), 590-592
MSC (1970):
Primary 30A58
DOI:
https://doi.org/10.1090/S0002-9904-1975-13748-7
MathSciNet review:
0364630
Full-text PDF
References | Similar Articles | Additional Information
- 1. P. Appell, E. Goursat and P. Fatou, Théorie des fonctions algébriques. Vol. 2, Gauthier-Villars, Paris, 1930.
- 2. A. R. Forsyth, Theory of differential equations. Vol. 4, Cambridge Univ. Press, Cambridge, 1902.
- 3. D. A. Hejhal, Theta functions, kernel functions, and Abelian integrals, Mem. Amer. Math. Soc. No. 129 (1972). MR 372187
- 4. D. A. Hejhal, Monodromy groups and linearly polymorphic functions, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, no. 79, Princeton Univ. Press, Princeton, N. J. 1974, pp. 247-261. MR 355035
- 5. H. Poincaré, Mémoire sur les fonctions zétafuchsiennes, Acta Math. 5 (1884), 209-278. MR 1554656
- 6. L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen. Vol. 2, B. G. Teubner, Leipzig, 1897.
- 7. C. Teleman, Sur les structures fibrées osculatrices d'une surface de Riemann, Comment. Math. Helv. 34 (1960), 175-184. MR 23 #A2160. MR 124850
- 8. E. Wilczynski, Projective differential geometry of curves and ruled surfaces, B. G. Teubner, Leipzig, 1906.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 30A58
Retrieve articles in all journals with MSC (1970): 30A58
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1975-13748-7