WHEN IS A MANIFOLD A LEAF OF SOME FOLIATION?

BY JONATHAN D. SONDOW

Communicated by Glen E. Bredon, February 4, 1975

Given a connected smooth open manifold \(L \), does there exist a compact manifold \(M \) and a \(C^r \) codimension \(q \) foliation of \(M \) with a leaf diffeomorphic to \(L \)? Here \(1 \leq r \leq \infty \). Most of our results are for \(q = 1 \), but note that if the answer is yes for \(q \) then it is yes for any \(q' > q \). Theorem 1 gives four conditions on \(L \) any one of which is sufficient, and the Corollary provides interesting examples where \(L \) is a surface. We have found no necessary condition in general, but Theorem 2 gives a strong necessary condition on the ends of \(L \) in order that \(L \) be a codimension one leaf each of whose ends has only one asymptote. Details and proofs will appear elsewhere.

Theorem 1. \(L \) is diffeomorphic to a leaf of a \(C^r \) codimension \(q \) foliation of some compact manifold if any one of the following conditions is satisfied (\(q = 1 \) except possibly in condition 1.4).

1.1. \(L \) is diffeomorphic to the interior of a compact manifold-with-boundary \((r = \infty \) and \(L \) will be a proper leaf).

1.2. \(L = L_1 \# L_2 \) where \(L_1 \) and \(L_2 \) are proper leaves of \(C^r \) codimension one foliations of compact orientable manifolds.

1.3. \(L = L_1 \ast X \) where \(L_1 \) is a leaf of a \(C^r \) codimension one foliation of a compact manifold with a closed transversal which intersects \(L_1 \) in \(X \).

1.4. \(L \) is a regular covering space of a compact manifold with covering group which has a \(C^r \) action on a connected compact \(q \)-manifold with a free orbit. (If the orbit is discrete, the leaf \(L \) will be proper.)

Recall (see e.g. [2]) that an end \(e \) of a connected manifold is determined by a sequence \(U_1 \supset U_2 \supset \ldots \) of unbounded components of the complements of compact sets such that \(\bigcap_{i=1}^{\infty} \overline{U}_i = \emptyset \). Another such sequence \(V_1 \supset V_2 \supset \ldots \) determines the same end if every \(U_i \) contains some \(V_j \). Each \(U_i \) is called a neighborhood of \(e \). Define \(e \) to be boundable if it has a closed neighborhood of the form \(B \times [0, \infty) \) where \(B \) is a connected compact manifold.

AMS (MOS) subject classifications (1970). Primary 57D15.
1 This work partially supported by NSF grant GP29265.
COROLLARY. Every orientable 2-manifold with a finite number of ends is a proper leaf of a C^r foliation of a compact 3-manifold, where $r = 1$ or $r = \infty$ depending on whether the number of nonboundable ends is odd or even, respectively.

If e is an end of a leaf L of a foliation of a manifold M, define the asymptote set A_e of e to be $\bigcap_{i=1}^{\infty} \text{Cl}(U_i)$, where e is determined by neighborhoods $U_1 \supset U_2 \supset \ldots$ in L and $\text{Cl}(U_i)$ denotes the closure of U_i in M. Then A_e is a well-defined closed union of leaves and is connected if M is compact. Define a leaf L to be nice if A_e is a single leaf for every end e of L. Note that a nice leaf is proper and that A_e is compact if M is compact. Finally, say that an end e of a manifold L is an infinite repetition if some closed neighborhood in L of e is of the form $W \cup_f W \cup_f \ldots$ where W is a connected compact manifold-with-boundary, $\text{Bd} _W$ has two components $\text{Bd} _W$ and $\text{Bd} _+ W$, and f: $\text{Bd} _+ W \rightarrow \text{Bd} _- W$ is a diffeomorphism.

THEOREM 2. If L is a nice leaf of a C^1 codimension one foliation of a compact manifold then L has only a finite number of ends and each one is an infinite repetition.

The proof uses the following two theorems, of which the first is a generalization of Reeb's first stability theorem in [3] and the second is proved using the framed surgery method of [1].

THEOREM 3. Let M be a (not necessarily compact) manifold-with-(possibly empty) boundary with a codimension q foliation transverse to $\text{Bd} M$. Let A be a compact leaf and let D be a q-disk transverse to the foliation and cutting A in exactly one point x_0. Suppose there exists a point x in D such that each element of the holonomy group of A has a representative local diffeomorphism of D whose domain contains x and which leaves x fixed. If x is sufficiently closed to x_0 then the leaf through x is diffeomorphic to A.

THEOREM 4. If h: $\Pi_1 A \rightarrow \mathbb{Z}$ is a surjection, where A is a connected compact manifold, then there exists a smooth map g: $A \rightarrow S^1$ such that $h = g_*$: $\Pi_1 A \rightarrow \Pi_1 S^1 = \mathbb{Z}$ and for some regular value v in S^1, the manifold $g^{-1}(v)$ is connected and does not separate A.

REFERENCES

DEPARTMENT OF MATHEMATICS, CITY COLLEGE, NEW YORK, NEW YORK 10031