DEFORMING P.L. HOMEOMORPHISMS
ON A CONVEX 2-DISK

BY CHUNG-WU HO

Communicated by Philip T. Church, March 3, 1975

1. The main result. Let D be a convex disk in \mathbb{R}^2 whose boundary is a polygon. By a triangulation of D, we mean a (rectilinear) simplicial complex which has D as its underlying space. We shall call a homeomorphism f of D onto D a p.l. homeomorphism if there exists a triangulation K of D such that the restriction of f to each simplex σ of K is a linear map of σ into \mathbb{R}^2. We shall consider only those p.l. homeomorphisms of D which are pointwise fixed on the boundary of D. In this note, we announce the following result.

Theorem A. For each p.l. homeomorphism f of D, there exists a triangulation K of D such that f may be realized by successively moving the vertices of K in a finite number of steps (with the motion being extended linearly to each simplex of K) such that in the process of moving, none of the simplices is allowed to collapse.

The general problem of deforming a prescribed map of a space into the identity map, or vice versa, in a specific manner has a long history. For the special case of deforming a particular homeomorphism of an n-cell into the identity map through a special class of homeomorphisms, H. Tietze proved as early as 1914 that any homeomorphism of a 2-disk, which is pointwise fixed on the boundary of the disk, can be deformed into the identity map through a family of such homeomorphisms [5]. This result was extended in 1923 for an n-dimensional cell by J. W. Alexander [1]. The technique used by Alexander can in fact be used to show that each p.l. homeomorphism on a polyhedral n-cell, which is pointwise fixed on the boundary of the cell, can be deformed into the identity map through a family of such p.l. homeomorphisms. However, each of the p.l. homeomorphisms of the family requires a different triangulation of the domain space. It is therefore natural to ask whether this

Key words and phrases. Simplicial complex, triangulation, proper triangulation, p.l. homeomorphism, deformation of maps, simplicial subdivision.

Copyright © 1975, American Mathematical Society
deformation can be carried out in such a way that all the p.l. homeomorphisms required in the deformation process are linear with respect to a fixed triangulation of the n-cell. Our Theorem A clearly answers this question in the affirmative for a convex 2-dimensional polyhedral disk. Our proof of Theorem A, as outlined in the next two sections, is based on the assumptions that the disk is convex and 2-dimensional. We do not know whether the theorem is still true for a higher dimensional disk or for a 2-dimensional disk which is not convex.

2. Preliminaries. For each triangulation K of D, we shall let $L(K)$ be the space of all p.l. homeomorphisms of D which are linear with respect to K. The space $L(K)$ is equipped with the compact open topology. Observe that each element $f \in L(K)$ is completely determined by the image under f of the vertices of K which are contained in the interior of D. Thus, if an ordering, say from 1 to n, is assigned to these interior vertices of K, each element $f \in L(K)$ may be identified as a point in the space \mathbb{R}^{2n}. In fact, one may establish without too much effort

Proposition 1. For each triangulation K of D, the space $L(K)$ may be identified as an open subset of \mathbb{R}^{2n} where n is the number of vertices of K contained in the interior of D.

Under this identification of $L(K)$ as an open subset of \mathbb{R}^{2n}, we observe that each element $f \in L(K)$ has a neighbourhood N in $L(K)$ such that each $g \in N$ can be obtained from f by successively moving the images $f(v)$ of the vertices v of K. To see this, one needs only to construct a "cubic box" centered at f in \mathbb{R}^{2n} which is contained in $L(K)$. Then one may deform f to any other element g of the box by moving successively the component of f in each copy of \mathbb{R}^2 to the corresponding component of g. From this observation and an elementary compactness argument, one establishes immediately

Proposition 2. Let K be a triangulation of D and let f, g be two elements of $L(K)$. The element f may be deformed to g by moving successively the images $f(v)$ of the vertices of K if and only if f may be connected to g by a path in the space $L(K)$.

With this proposition, one may rewrite our Theorem A in the following equivalent form.

Theorem B. For each p.l. homeomorphism f of D, there exists a triangulation K of D such that $f \in L(K)$ and f may be connected to the identity map of D by a path in $L(K)$.
3. Sketch of the proof of Theorem B. Let K be a triangulation of D. A vertex of K is called a boundary vertex if it is contained in $\text{Bd}(D)$. The triangulation K will be called a proper triangulation if no three boundary vertices of K are on a straight line. Intuitively, a proper triangulation of D has no vertices on the sides of D except at the “corners” of D. We first establish a special case of Theorem B, the case when the p.l. homeomorphism f belongs to $L(K)$ for a proper triangulation K of D (cf. [2]).

Proposition 3. The space $L(K)$ is pathwise connected for a proper triangulation K of D.

We may then use an argument similar to that described in [3] to show that for each p.l. homeomorphism f of D, there is a proper triangulation K of D such that f may be connected to $L(K)$ by a path in some larger space $L(K')$. This implies Theorem B. The details of all the proofs will appear in [4].

References

DEPARTMENT OF MATHEMATICAL STUDIES, SOUTHERN ILLINOIS UNIVERSITY, EDWARDSVILLE, ILLINOIS 62025