EXTENSION THEOREMS FOR REDUCTIVE GROUP ACTIONS ON COMPACT KAHLER MANIFOLDS

BY ANDREW J. SOMMESE

Communicated by Stephen S. Shatz, March 13, 1975

Let \(G \) be a connected complex reductive Lie group. Noting [3], [7], [8] that \(G \) has the structure of a linear algebraic group, let \(\widetilde{G} \) be any projective manifold in which \(G \) is Zariski open and which induces the above algebraic structure on \(G \). The purpose of the present note is to announce

Proposition I. Let \(G \) be as above and act holomorphically on a compact Kaehler manifold \(X \). Assume that the Lie algebra of holomorphic vector fields on \(X \) generated by \(G \) is annihilated by every holomorphic one form.

Let \(\Phi: Y \to X \) be a holomorphic map where \(Y \) is a normal reduced analytic space. Consider the equivariant map \(\Phi': G \times Y \to X \); \(\Phi' \) extends meromorphically (in the sense of Remmert) to \(\widetilde{G} \times Y \).

Remarks. The condition on vector fields annihilated by one forms is automatically satisfied if (cf. [12]–[14]) \(H^1(X, \mathbb{Q}) = 0 \), or \(G \) is semisimple, or if every generator of the solvable radical of \(G \) has a fixed point, or if \(G \) is a linear algebraic group acting algebraically on a projective \(X \). Taking \(Y \) to be a point, one gets the orbits of \(G \) to be Zariski open in their closures which are analytic sets. A simple corollary is the classical result that there is only one structure of a linear algebraic group on \(G \) (cf. [7]), and in fact any reductive connected subgroup of an algebraic group over \(\mathbb{C} \) is an algebraic subgroup.

As a further application of the techniques used, a new proof of an improved form of a fixed point theorem (cf. [12], [13], [14]) of the author is given:

Proposition II. Let \(S \) be a connected solvable Lie group acting holomorphically on a compact Kaehler manifold \(X \). The following are equivalent:

(a) \(S \) has a fixed point on \(X \).

Key words and phrases. Reductive group actions, Kaehler manifolds, linear algebraic groups.
(b) S leaves a compact set in a fibre of the Albanese map invariant.

c) S has a fixed point within any compact set K on X that S leaves invariant.

d) The Lie algebra of vector-fields that S generates on X is annihilated by every holomorphic one form on X.

REMARK. The assertion (c) where K is any compact set is new; the method of proof allows one to relax the compactness of X and show if, in addition, $H^1(X, \mathcal{O}_X) = 0$, then (c) is true.

The following is the fundamental observation on which everything rests.

Lemma. Let X be a compact Kaehler manifold and $\rho: \mathbb{C}^* \to \text{Aut}(X)$ a holomorphic \mathbb{C}^* action that has at least one fixed point. Let $A: \mathbb{C}^* \to X$ be a holomorphic equivariant map onto an orbit: then A extends to a homomorphic equivariant map \tilde{A} of $\mathbb{C}P^1$ to X.

Proof. Assume without loss of generality that $A(\mathbb{C}^*)$ is not a point. Let μ be a Kaehler metric on X and ω the associated Kaehler form. Assume that μ has been averaged with respect to the circle subgroup $S^1 \subseteq \mathbb{C}^*$. Let χ be the holomorphic vector-field on X associated to $\rho: \mathbb{C}^* \to \text{Aut}(X)$.

Because of equivariance, the Jacobian, dA, of A, maps some constant multiple of $z(\partial/\partial z)$ onto the restriction of the vector-field χ to $A(\mathbb{C}^*)$. Without loss of generality this constant is assumed to be one.

Let $A^*\mu = a(r) \, dz \otimes d\bar{z}$ where $a(r)$ is positive and depends only on r due to the S^1 averaging of μ. $A^*\omega = (i/2)a(r) \, dz \wedge d\bar{z}$.

$$
\mu(\chi, \chi) = \mu \left(dA \left(z \frac{\partial}{\partial z} \right), dA \left(z \frac{\partial}{\partial z} \right) \right) = A^*\mu \left(z \frac{\partial}{\partial z}, z \frac{\partial}{\partial z} \right)
$$

$$
= a(r)|z|^2 \leq M < \infty
$$

where $\sup_x \mu(\chi, \chi) = M < \infty$.

Now by Lichnerowicz [5] there exists a C^∞ function ϕ on X such that $\bar{\partial}\phi = \omega(\chi)$. Pulling back and, without confusion, letting ϕ stand for $A^*\phi = \phi(A(z))$, one has

$$
\frac{i}{2} z a(r) \, d\bar{z} = \frac{\partial \phi}{\partial z} \, d\bar{z} \quad \text{or} \quad \frac{i}{2} z a(r) = \frac{\partial \phi}{\partial z}.
$$

Now fix one circle, say the unit circle $C_1 \subset \mathbb{C}^*$ and let $C_R = \{ z \in \mathbb{C}^* | \, |z| = R \}$. Assume $R > 1$; C_1 and C_R bound an annulus \tilde{A} with $\partial \tilde{A} = C_R - C_1$. Now
\[\int_{A} A^* \mu = \int_{A} \int_{z} \frac{i}{z} a(r) dz \wedge d\bar{z} = -\int_{A} \int_{z} \frac{\partial \phi}{\partial z} \frac{d\bar{z} \wedge dz}{z} \]

\[= -\int_{C_R} \phi \frac{dz}{z} + \int_{C_1} \phi \frac{dz}{z} = \frac{1}{i} \int_{0}^{2\pi} \phi(Re^{i\theta}) \, d\theta - C \]

with C a constant. Now \(|\int_{0}^{2\pi} \phi(Re^{i\theta}) \, d\theta| \leq M' < \infty\) since \(\phi\) is the pullback of a bounded function on \(X\).

Therefore \(\int_{A} A^* \mu \leq M'' < \infty\) where \(M''\) is a positive constant independent of \(R\). Thus by Bishop's extension theorem (cf. [1], [2]), \(A\) extends holomorphically over \(\infty\). An identical argument gives extension at 0. Q.E.D.

Using the above Lemma and the Levi-Griffiths-Shiffman-Siu extension theorem (cf. [2], [9], [10], [11]) repeatedly, one proves the result for \(SL(2, \mathbb{C})\) and groups of the form \((\mathbb{C}^*)^n\) that have a fixed point on \(X\). Then one proves it for one parameter unipotent subgroup of \(G\) by using the above \(SL(2, \mathbb{C})\) result on an \(SL(2, \mathbb{C})\) in \(G\) containing the subgroup; this can be done by Jacobson-Morosow (cf. [4]). One now proves it for a Borel subgroup of \(G\) and uses an argument depending on the fact that one has a locally trivial fibering of \(G\) over \(G/B\) which is compact.

In the very interesting paper [6] of Lieberman, related matters are discussed.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520