Consider the retarded functional differential equation (RFDE)

\[\dot{x}(t) = f(x_t) \]

where as in [1], \(x_t(\theta) = x(t + \theta), -1 \leq \theta \leq 0, x_t \in C = C([-1, 0], \mathbb{R}^n) \), and
\[f \in X = C^\infty(C, \mathbb{R}^n). \] Oliva [5] showed fixed points of (1) generically are hyperbolic; here we generalize to the theorem of Kupka [2], Markus [3] and Smale [7]. With an appropriate Whitney (Baire) topology on \(X \), we have

\textbf{Theorem 1.} The set of \(f \in X \) for which
1. all fixed points and all periodic solutions of (1) are hyperbolic,
2. all global unstable manifolds are injectively immersed in \(C \), and
3. all global unstable and local stable manifolds intersect transversally

is a residual subset of \(X \).

The restriction to the local stable manifold in 3. is necessary as we lack backwards existence and uniqueness.

If we consider only equations

\[\dot{x}(t) = F(x(t - \tau_1), x(t - \tau_2), \ldots, x(t - \tau_p)), \]

(2)

with \(F \in C^\infty(\mathbb{R}^{n^p}, \mathbb{R}^n) \), we obtain

\textbf{Theorem 2.} Let \(\tau_1 = 0 \). Then the set of \(F \in C^\infty(\mathbb{R}^{n^p}, \mathbb{R}^n) \) for which
1., 2. and 3. above hold is a residual set.

The question of what happens when \(\tau_1 > 0 \) seems to be open.

\textit{Key words and phrases.} Delay differential equation, functional differential equation, generic, hyperbolic periodic orbit, stable (unstable) manifold, transversality.

1This work was partially supported by National Science Foundation Grant GP 38955 at the University of Minnesota, and by National Science Foundation Grant GP 28931X2 at Brown University.

Copyright © 1975, American Mathematical Society

750
To prove Theorem 1, the various perturbations are constructed using the map \(\delta_N : C \to \mathbb{R}^{n(N+1)} \)

\[\delta_N \phi = (\phi(0), \phi(-1/N), \phi(-2/N), \ldots, \phi(-1)). \]

The next lemma, which is easily proved, is used when \(M \) is a periodic orbit or part of an unstable manifold.

Lemma 1. Let \(M \subseteq C \) be an embedded \(C^\infty \) finite dimensional submanifold, and \(K \subseteq M \) compact. Then there is a neighborhood \(K \subseteq V \subseteq M \) in \(M \) such that for large \(N \), \(\delta_N : V \to \mathbb{R}^{n(N+1)} \) embeds \(V \) into \(\mathbb{R}^{n(N+1)} \) and is an immersion (and hence a diffeomorphism).

We cannot use \(\delta_N \) in Theorem 2 as all perturbations must take place in \(\mathbb{R}^{np} \). However, after approximating \(F \) with an analytic function, the following is used, with \(x(t) \) periodic or lying on an unstable manifold.

Lemma 2. Suppose \(\tau_1 = 0 \) and let \(x(t) \) be a solution of (2) on \((-\infty, 0] \), where \(F \) is analytic and \(x \) is bounded on \((-\infty, 0] \). Set \(y(t) = (x(t - \tau_1), x(t - \tau_2), \ldots, x(t - \tau_p)) \). Then

1. if \(x \) has least period \(T > 0 \), then with the exception of finitely many points in \([0, T] \), \(y \) is one-to-one on this interval;
2. if \(x \) is not periodic or constant, and \([a, b] \subseteq (-\infty, 0] \), then the same conclusion about \(y \) holds on \([a, b] \).

Proof. By a theorem of Nussbaum [4], \(x(t) \) is analytic, so any self-intersection of \(t \to y(t) \) in \(\mathbb{R}^{np} \) is either isolated or forms an analytic arc. In the latter case

\[y(t) = y(\sigma(t)) \quad \text{so} \quad x(t) = x(\sigma(t)) \]

for some analytic \(\sigma \) defined in a \(t \)-interval \(I \), with \(\dot{\sigma}(t) \neq 0 \) and \(\sigma(t) \neq t \). Thus

\[\dot{x}(t) = F(y(t)) = F(y(\sigma(t))) = \dot{x}(\sigma(t)). \]

But differentiating (3) gives \(\dot{x}(t) = \dot{x}(\sigma(t))\dot{\sigma}(t) \), so \(\dot{\sigma}(t) \equiv 1 \). Hence for some \(A \), \(x(t) = x(t + A) \) in \(I \) and thus for all \(t \) by analyticity. Thus 1 holds with \(A \) a multiple of \(T \), proving the lemma.

References

2. I. Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484; Addendum and corrections, ibid. 3 (1964), 411–420. MR 29 #2818a; #6134.

THE SELBERG TRACE FORMULA FOR CONGRUENCE SUBGROUPS

BY DENNIS A. HEJHAL

Communicated by S. Eilenberg, March 13, 1975

1. Introduction. The Selberg trace formula for \(SL(2, \mathbb{R}) \) is commonly understood to be a non-Abelian analog of the Poisson summation formula. The formula arises from letting a Fuchsian group \(\Gamma \) act on the upper half-plane \(\mathbb{H} \) and contains four basic contributions: identity, hyperbolic, elliptic, and parabolic [2, pp. 95–108], [3, pp. 72–79]. Because of its possible number-theoretic applications, it seems only natural to calculate the trace formula explicitly for various congruence subgroups of \(SL(2, \mathbb{Z}) \) and see what happens.

From the general theory, one knows that the parabolic (or arithmetic) contribution will be \(\text{Tr}(M) \), where

\[
M = \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \phi'(s) \phi(s)^{-1} \, dr + \frac{1}{4}[I - \phi(\frac{1}{2})] h(0) \\
- \left[g(0) \ln 2 + \frac{1}{2\pi} \int_{-\infty}^{\infty} h(r) \frac{\Gamma'(1 + ir)}{\Gamma(1 + ir)} \, dr \right] I.
\]

AMS (MOS) subject classifications (1970). Primary 10D10, 10H05.

Copyright © 1975, American Mathematical Society