CONVEXITY FOR A SIMPLY CONNECTED \(p \)-ADIC GROUP

BY ALLAN J. SILBERGER

Communicated by Barbara Osofsky, April 24, 1975

In [4] Kostant showed that the set of Iwasawa double cosets which intersect a given Cartan double coset in a semisimple Lie group corresponds to a certain convex subset in the Lie algebra of a maximal torus of the group. As a consequence, he established that representatives for the double cosets relative to a maximal compact subgroup of a semisimple Lie group may be chosen in the unipotent radical of a minimal parabolic subgroup. We announce here analogues of these results for a simply-connected \(p \)-adic group.

I wish to thank Roger Howe and Jacques Tits for valuable conversations during the time I was thinking about this problem.

Let \(G \) be a connected simply-connected semisimple algebraic group defined over a \(p \)-adic field \(\Omega \). Let \(\mathfrak{g} \) denote the group of \(\Omega \)-rational points of \(G \). Then \(\mathfrak{g} \) is a locally compact totally disconnected group. Borel and Tits [1] and Bruhat and Tits [2] have shown that \(G \) has a structure theory which is similar in many ways to that of a semisimple Lie group.

Let \(P \) be a minimal parabolic \(\Omega \)-subgroup of \(G \). Then \(P \) is a split product \(P = MN \) in which \(M \) is connected and reductive and \(N \) is the unipotent radical of \(P \). Let \(A \) be the maximal \(\Omega \)-split torus in the center of \(M \). For simplicity, we denote the group of \(\Omega \)-points of each of the above algebraic groups by the corresponding ordinary capital letter.

Let \(^{0}A \) be the maximal compact subgroup of \(A \). Then \(A/^{0}A \) is a free \(\mathbb{Z} \)-module of rank equal to the \(\Omega \)-rank of \(G \). We call \(\mathfrak{a} = (A/^{0}A) \otimes_{\mathbb{Z}} \mathbb{R} \) the Lie algebra of \(A \) and write \(H: A \to \mathfrak{a} \) for the natural map which imbeds \(A/^{0}A \) as a lattice in \(\mathfrak{a} \). To any rational character \(\chi \) of \(A \) we associate a linear functional on \(\mathfrak{a} \) by setting \(\log |\chi(a)| = \langle \chi, H(a) \rangle \) \((a \in A)\). The relative Weyl group \(W = \text{N}_G(A)/\text{Z}_G(A) \) operates on \(A \) and \(\mathfrak{a} \). There is a root system in the dual \(\mathfrak{a}^* \) of \(\mathfrak{a} \) associated to the restriction to \(A \) of the adjoint representation of \(G \). Choosing a \(W \)-invariant scalar product on \(\mathfrak{a} \), we regard this root system as a subset of \(\mathfrak{a} \). Let \(N \) correspond to a set of positive roots and let \(\bar{N} \) be the \(\Omega \)-points of the unipotent radical of the opposite parabolic subgroup, corresponding to the negative roots. Write \(\mathfrak{a}^+ \) [respectively, \(+ \mathfrak{a} \)] to denote the (closed) positive chamber in \(\mathfrak{a} \) [respectively, the cone consisting of nonnegative linear combinations of the positive roots]. The mapping \(H \) extends to \(M \); denoting the kernel of \(H \) in \(M \) as \(\mathfrak{o}M \), we see that \(H \) also imbeds \(M/\mathfrak{o}M \) as a lattice in \(\mathfrak{a} \). Let \(M^+ = H^{-1}(\mathfrak{a}^+) \) and \(+M = H^{-1}(+\mathfrak{a}) \).

We choose a particularly "good" maximal compact subgroup \(K \) of \(G \) (i.e.

Copyright © 1975, American Mathematical Society
corresponding to the origin in an apartment of the building of G and such that $K \supset B \supset P \cap K = P \cap B$, B a certain Iwahori subgroup of G), the existence of which is guaranteed by Bruhat's and Tits' theory, and recall that G has, with respect to K, both a Cartan decomposition $G = KM^+K$ and an Iwasawa decomposition $G = NMK$. We have the bijections $K \backslash G / K \leftrightarrow M^+ / \mathfrak{o}M$ and $N \backslash G / K \leftrightarrow M / \mathfrak{o}M$.

For $S \subset \mathfrak{H}$, we write $C(S)$ to denote the convex closure of S and $W \cdot S$ to denote the Weyl group orbit of S. Our main result (cf. Theorem 4.1 of [4]) is

Theorem. Let $m, m' \in M$. Then the double cosets KmK and $Nm'K$ intersect if and only if $H(m') \in C(W \cdot H(m))$.

Since $0 = H(1) \in C(W \cdot x)$ for all $x \in \mathfrak{a}$, we have

Corollary. $G = KNK$.

The following simple geometric lemma translates "only if" into a result [2, 4.4.4(iii)] of Bruhat-Tits.

Lemma 1. Let $x \in \mathfrak{a}^+$ and set $\mathfrak{a}(x) = \{ y \in \mathfrak{a}^+ | x - y \in + \mathfrak{a} \}$. Then $W \cdot \mathfrak{a}(x) = C(W \cdot x)$.

It follows by inspection of the defining integrals that the zonal spherical functions on G, evaluated at fixed $m \in M$ and regarded as functions on \mathfrak{a} (or rather on \mathfrak{a}^*), may be interpreted as generating functions for the measures of the intersections $KmK \cap Nm'K$ ($m' \in M$). The Weyl group invariance of such a function on \mathfrak{a}^* [5] or, what is the same, the equivalence of all principal series representations of G in a Weyl group orbit [3, §8] implies

Lemma 2. Let $m, m' \in M$. Then KmK intersects $Nm'K$ for $N = N'$ if and only if the same is true for some (i.e. for every) N' conjugate to N under W.

The "if" part of our theorem is an easy consequence of the following structural result.

Lemma 3. Let B and \mathcal{N} be as above. Then $B\mathcal{N}K = B + MK$.

Details and proofs will appear elsewhere.

References

SONDERFORSCHUNGSBEREICH, “THEORETISCHE MATHEMATIK”, UNIVERSITÄT BONN, BONN, FEDERAL REPUBLIC OF GERMANY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS 01002

Current address: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115