Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

A priori estimates, geometric effects and asymptotic behavior


Author: Fritz John
Journal: Bull. Amer. Math. Soc. 81 (1975), 1013-1023
MSC (1970): Primary 35B45, 35B40
MathSciNet review: 0385292
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Hans Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155–158. MR 0088629
  • 2. Lars Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, Ne
  • 3. Jacques Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale Univ. Press, New Haven, Conn., 1923.
  • 4. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. MR 0140802
  • 5. L. E. Payne, Improperly posed problems in partial differential equations, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics, No. 22. MR 0463736
  • 6. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948. MR 0029615
  • 7. Sidney Leibovich and A. Richard Seebass (eds.), Nonlinear waves, Cornell University Press, Ithaca, N.Y.-London, 1974. Based on a series of seminars held at Cornell University, Ithaca, N.Y., 1969. MR 0355283
  • 8. Morris Kline and Irvin W. Kay, Electromagnetic theory and geometrical optics, Pure and Applied Mathematics, Vol. XII, Interscience Publishers John Wiley & Sons, Inc. New York-London-Sydn ey, 1965. MR 0180094
  • 9. J. J. Stoker, Water waves: The mathematical theory with applications, Pure and Applied Mathematics, Vol. IV, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. MR 0103672
  • 10. Richard E. Meyer, Introduction to mathematical fluid dynamics, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1971. Pure and Applied Mathematics, Vol. XXIV. MR 0366189
  • 11. A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. Fourth Ed. MR 0010851
  • 12. Louis Nirenberg, Estimates and existence of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 509–529. MR 0091402
  • 13. Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0178246
  • 14. Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
  • 15. Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. MR 0075429
  • 16. F. John, Derivatives of solutions of linear elliptic partial differential equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N. J., 1954, pp. 53–61. MR 0067307
  • 17. Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • 18. J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973 (French). MR 0600331
  • 19. Robert B. Davis, Asymptotic solutions of the first boundary value problem for a fourth-order elliptic partial differential equation, J. Rational Mech. Anal. 5 (1956), 605–620. MR 0078568
  • 20. C. Bardos, Prolongements maximaux positifs d'opérateurs positifs et problèmes de perturbations singulières, Séminaire Goulaouic-Schwartz, 1971-72, XXVI 1-12.
  • 21. C. Bardos, D. Brézis, and H. Brezis, Perturbations singulières et prolongements maximaux d’opérateurs positifs, Arch. Rational Mech. Anal. 53 (1973/74), 69–100 (French). MR 0348247
  • 22. Zeev Schuss, Singular perturbations and the transition from thin plate to membrane, Proc. Amer. Math. Soc. 58 (1976), 139–147. MR 0412571, 10.1090/S0002-9939-1976-0412571-6
  • 23. Paul Fife, Non-linear deflection of thin elastic plates under tension, Comm. Pure Appl. Math. 14 (1961), 81–112. MR 0128697
  • 24. Fritz John, The transition from thin plate to membrane in the case of a plate under uniform tension, Continuum mechanics and related problems of analysis (on the occasion of the eightieth birthday of Academician N. I. Mushelišvili) (Russian), Izdat. “Nauka”, Moscow, 1972, pp. 193–201. MR 0381431
  • 25. F. John, The transition from thin plate to membrane in the equations of v. Karman-Föppl, Rend. Mat. (to appear).
  • 26. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 0125307
  • 27. I. S. Sokolnikoff, Mathematical theory of elasticity, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. 2d ed. MR 0075755
  • 28. R. A. Toupin, Saint-Venant’s principle, Arch. Rational Mech. Anal. 18 (1965), 83–96. MR 0172506
  • 29. James K. Knowles, On Saint-Venant’s principle in the two-dimensional linear theory of elasticity, Arch. Rational Mech. Anal. 21 (1966), 1–22. MR 0187480
  • 30. Joseph J. Roseman, The priniple of Saint-Venant in linear and non-linear plane elasticity, Arch. Rational Mech. Anal. 26 (1967), 142–162. MR 0216801
  • 31. Fritz John, Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Comm. Pure Appl. Math. 18 (1965), 235–267. MR 0175384
  • 32. Avner Friedman, Generalized functions and partial differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0165388
  • 33. Neil Berger, Estimates for the derivatives of the velocity and pressure in shallow water flow and approximate shallow water equations, SIAM J. Appl. Math. 27 (1974), 256–280. MR 0353828
  • 34. I. N. Sneddon and D. S. Berry, The classical theory of elasticity, Elastizität und Plastizität, Handbuch der Physik, herausgegeben von S. Flügge. Bd. 6, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958, pp. 1–126. MR 0093120
  • 35. C. Truesdell and W. Noll, The non-linear field theories of mechanics, Handbuch der Physik, Band III/3, Springer-Verlag, Berlin, 1965, pp. 1–602. MR 0193816
  • 36. Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. MR 0138225
  • 37. F. John, Quasi-isometric mappings, Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 462–473. MR 0190905
  • 38. Fritz John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77–110. MR 0222666
    F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498
  • 40. Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 0159138
  • 41. Norman G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15 (1964), 717–721. MR 0168712, 10.1090/S0002-9939-1964-0168712-3
  • 42. Sven Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593–608. MR 0190729
  • 43. Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286
  • 44. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 45. C. Fefferman and E. M. Stein, 𝐻^{𝑝} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 0447953
  • 46. F. W. Gehring, The 𝐿^{𝑝}-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 0402038
  • 47. H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260–276. MR 0361067
  • 48. Fritz John, Continuous dependence on data for solutions of partial differential equations with a presribed bound, Comm. Pure Appl. Math. 13 (1960), 551–585. MR 0130456

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 35B45, 35B40

Retrieve articles in all journals with MSC (1970): 35B45, 35B40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1975-13887-0