ON THE CLASSIFICATION OF TAUT SUBMANIFOLDS

BY MICHAEL FREEDMAN

Communicated by Samuel Eilenberg, April 28, 1975

All terminology will be smooth. A submanifold $K^{2n} \hookrightarrow M^{2n+2}$ is taut if $\pi_i(U, \partial U) = 0$ for $i < n$, where $U = (M$-neighborhood K). Examples are: nonsingular algebraic hypersurfaces in CP^n (this follows from the Lefschetz theorem on hyperplane sections), simple knots (see [L]), the spines (see [M]). Every codimension-2 homology class contains taut representatives (see [K-M]), and the set of taut submanifolds is closed under connected sum (of pairs) with $(S^n \times S^n \rightarrow S^{2n+2})$. Taut submanifolds are "almost canonical" in the sense of [Q], and from this viewpoint it is readily seen that if $n \geq 3$, every $K^{2n} \hookrightarrow M^{2n+2}$ with i-n-connected is concordant to $K^{2n} \hookrightarrow M^{2n+2}$ taut.

If M^{2n+2} is simply connected, the homology groups of K^{2n}, taut, are completely determined by the homology of M^{2n+2} except for $B_n(K^{2n})$. A lower bound on $B_n(K)$ in terms of $i_*[K^{2n}]$ and the cohomology ring of M^{2n+2} has been obtained in [T-W]. In [F1] we have proven Theorem 1, which provides a partial converse to Theorem 2.2 of [T-W] for $M \cong CP^{n+1}$, $n > 2$ odd, and $i_*[K] = p$, a prime, multiple of the generator of $H_{2n}(CP^{n+1}; Z)$. Interestingly, if $p > 3$, the nonsingular algebraic hypersurfaces V are not the simplest taut submanifolds in their homology class, but may be decomposed as $V = K \# l$-copies $S^n \times S^n$, $l > 0$, for some taut submanifold K.

We do not know if this is true for $n = 1$. If it were, there would be surfaces imbedded in CP^2 with genus smaller than that of the nonsingular algebraic hypersurfaces to which they are homologous. This would contradict Thom's conjecture.

Statement of Theorem 1. Let M^{2n+2} be a simply-connected, oriented, smooth $(2n+2)$-manifold, n odd > 1. Let $x \in H^2(M^{2n+2}; Z)$ generate a free summand of $H^2(M^{2n+2}; Z)$. Let p be any prime. Set

$$ s_{\text{even}} = \max \{4, (\cosh(p - 2k)x)(\text{sech}(px))(L(M))[M] | 0 < k < p \}, $$
$$ s_{\text{odd}} = \max \{3, (\cosh(p - 2k)x)(\text{sech}(px))(L(M))[M] | 0 < k < p \}, $$

where L is the Hirzebruch polynomial.

For all integers $h \geq 0$, there exists a taut submanifold $K_h \hookrightarrow M$ with

$$ M \cap px = i_*[K_h], $$

AMS (MOS) subject classifications (1970). Primary 57D95; Secondary 57D65.
and

\[B_n(K_h) = \overline{\alpha}_{\text{even}} + 6\tau_n(M) - 2B_n(M) + B_{n+1}(M) + 2h, \]

if \(B_{n+1}(M) \) is even.

\[= \overline{\alpha}_{\text{odd}} + 6\tau_n(M) - 2B_n(M) + B_{n+1}(M) + 2h, \]

if \(B_{n+1}(M) \) is odd,

\[B_n(M) = \text{rank } H_n(M; Z)/\text{Torsion}, \quad T_n(M) = \text{rank } H_n(M) = \text{rank } H_n(M; Z). \]

We now state two theorems, proved in [F2], which indicate to what extent the diffeomorphism class of a taut submanifold is fixed by \(B_n(K) \).

Theorem 2. If \(M^{2n+2} \) is a compact, simply connected, smooth \((2n+2)\)-manifold, \(n \) odd \(\geq 3 \), and \(K_0^{2n+2} \xrightarrow{i_0} M^{2n+2} \) and \(K_1^{2n+2} \xrightarrow{i_1} M^{2n+2} \) are \(n \)-connected inclusions of closed submanifolds with \((i_0)_*[K_0] = (i_1)_*[K_1] \in H_{2n}(M^{2n+2}; Z)\), then if \(B_n(K_0) = B_n(K_1) \), \(K_0 \) is diffeomorphic to \(K_1 \).

Theorem 3. Assume \(M^{2n+2} \) is a simply-connected smooth \((2n+2)\)-manifold, \(n \) even, \(\geq 2 \), with \(H_n(M; Z) = 0 \). If \(i_0 \) and \(i_1 \) are as above, then if the intersection pairings on \(H_n(K_0; Z)/\text{Torsion} \) and \(H_n(K_1; Z)/\text{Torsion} \) are isometric, \(K_0 \) is diffeomorphic to \(K_1 \).

If \(M^{2n+2} \), \(n \) odd, \(\geq 3 \), is simply-connected, it follows from Theorem 2 that there is a simplest taut submanifold representing \(i_*[K] \), \(K_0 \), and every other is of the form \(K_i = K_0 \#_l \text{copies } S^n \times S^n \). This, together with a previous remark, yields a complete classification of taut submanifolds in a homotopy \(CP^{n+1}, n \) odd, \(\geq 1 \), representing a prime multiple of the generator of \(H_{2n}(CP^{n+1}; Z) \).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720