Let G be a noncompact, connected, semisimple Lie group with maximal compact subgroup K. Let Γ be a discrete, cocompact subgroup of G with no nontrivial elements of finite order and denote by M the space $\Gamma \backslash G/K$. M will be a Riemannian manifold with metric arising from the Cartan-Killing form of the Lie algebra of G. The Laplacian of M will have eigenvalues $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots$. Let $\zeta_M(t) = \sum_0^{\infty} e^{-\lambda_n t}$. It is standard that

$$\zeta_M(t) \approx (4\pi t)^{-\dim(M)/2}(a_0 + a_1 t + \cdots + a_n t^n + O(t^{n+1})), \quad t \downarrow 0.$$

Let $M' = G'/K$ be the compact dual of G/K. Then

$$\zeta_{M'}(t) \approx (4\pi t)^{-\dim(M)/2}(a'_0 + a'_1 t + \cdots + a'_n t^n + O(t^{n+1})), \quad t \downarrow 0$$

and the coefficients a'_n have been computed (see [1] and [2]).

THEOREM. $a_n = (-1)^n (\text{Vol}(M)/\text{Vol}(M')) a'_n$.

"Nolan Wallach informs us that Mr. Miatello has proved this result for symmetric spaces of rank 1 using different methods."

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

AMS (MOS) subject classifications (1970). Primary 35P20, 43A85.