Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The antipode of a finite-dimensional Hopf algebra over a field has finite order


Author: David E. Radford
Journal: Bull. Amer. Math. Soc. 81 (1975), 1103-1105
MSC (1970): Primary 16A50, 16A58, 16A60; Secondary 15A25, 15A30
DOI: https://doi.org/10.1090/S0002-9904-1975-13933-4
MathSciNet review: 0396650
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352-368. MR 44 #287. MR 283054
  • 2. R. G. Larson, The order of the antipode of a Hopf algebra, Proc. Amer. Math. Soc. 21 (1969), 167-170. MR 39 #1524. MR 240170
  • 3. R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94. MR 39 #1523. MR 240169
  • 4. D. E. Radford, The order of the antipode of a finite-dimensional Hopf algebra is finite, Amer. J. Math, (to appear). MR 407069
  • 5. M. E. Sweedler, Hopf algebras, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705. MR 252485
  • 6. E. J. Taft and R. L. Wilson, On antipodes in pointed Hopf algebras, J. Algebra 29 (1974), 27-32. MR 49 #2820. MR 338053
  • 7. W. C. Waterhouse, Antipodes and grouplikes in finite Hopf algebras(to appear).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 16A50, 16A58, 16A60, 15A25, 15A30

Retrieve articles in all journals with MSC (1970): 16A50, 16A58, 16A60, 15A25, 15A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1975-13933-4

American Mathematical Society