RESEARCH ANNOUNCEMENTS

A THEOREM ON THE RANK OF A DIFFERENCE OF MATRICES

BY R. E. CLINE AND R. E. FUNDERLIC

Communicated by A. S. Householder, August 27, 1975

There have been several results on the characterization of $\text{rank}(A - S) = \text{rank}(A) - \text{rank}(S)$ and $\text{rank}(A - S) = \text{rank}(A)$. A result that characterizes some intermediate cases is

THEOREM. Let $S = UV^H$ where U and V are any matrices such that $AA^+U = U$ and $V^HA^+A = V^H$. Then $\text{rank}(A - S) = \text{rank}(A) - p$, $0 \leq p \leq k = \text{rank}(S)$, where $p = \text{nullity}(V^HA^+U - I)$.

This theorem gives as a special case the Wedderburn-Householder-Funderlic result [1].

COROLLARY. If U and V have full column rank, then the equality $\text{rank}(A - UV^H) = \text{rank}(A) - \text{rank}(UV^H)$ holds if and only if there are matrices X and Y such that $U = AX$ and $V = A^HY$ with $Y^HAX = I$.

REFERENCE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916

COMPUTER SCIENCES DIVISION, UNION CARBIDE CORPORATION, NUCLEAR DIVISION, OAK RIDGE, TENNESSEE 37830

Key words and phrases. Rank of matrix, pseudoinverse, semi-inverse.

\footnote{This work was partially supported by the U. S. Energy Research and Development Administration.}

Copyright © 1976, American Mathematical Society