CONJUGATE SYSTEM CHARACTERIZATIONS OF H^1: COUNTER EXAMPLES FOR THE EUCLIDEAN PLANE AND LOCAL FIELDS

BY A. GANDULFO, J. GARCIA-CUERVA AND M. TAIBLESON

Communicated by Richard Goldberg, August 27, 1975

ABSTRACT. The characterization of the Hardy space, H^1 of the plane, as those integrable functions whose first order Riesz transforms are (or whose maximal function is) integrable is well known. J.-A. Chao and M. Taibleson have shown that there is a conjugate system characterization of H^1 of a local field that parallels the Riesz system characterization of $H^1(R^2)$. C. Fefferman has conjectured that "nice" conjugate systems, such as the second order Riesz transforms would also give a characterization of $H^1(R^2)$. In the present paper a counter example of A. Gandulfo and M. Taibleson is described that shows that any conjugate system generated by an even kernel will fail to characterize H^1 of a local field. A counter example of J. Garcia-Cuerva is described that shows that the second order Riesz system for the Euclidean plane (which is generated by an even kernel) will fail to characterize $H^1(R^2)$ in the above sense.

Let $f \in L^1(R^n)$ and let $f^*(x) = \sup_{y>0} |f(x, y)|$, where $f(x, y)$ is the Poisson integral of f. We say that $f \in H^1(R^n)$ iff $f^* \in L^1(R^n)$. Let (r, θ) be the polar representation of $(x_1, x_2) \in R^2$, and let $(\cdot)^\wedge$ and $(\cdot)^\sim$ represents the Fourier transform and its inverse. The following characterization of $H^1(R^2)$ is in [5, §8]:

Theorem A. If f is real-valued and $f \in L^1(R^2)$, then $f \in H^1(R^2)$ iff $(e^{i\theta} \hat{f})^\sim \in L^1(R^2)$.

Similarly, if K is a local field, e.g., a p-adic field, we may define $f^*(x) = \sup_{k \in Z} |f(x, k)|$, where $f(x, k)$ is the regularization of f. (See [6, Chapter IV].) We say that $f \in H^1(K)$ iff $f^* \in L^1(K)$. The following characterization of $H^1(K)$ follows from results of Chao and Taibleson [3] and Chao [1], [2].

Theorem B. Suppose π is a multiplicative character on K that is unitary, ramified of degree 1, homogeneous of degree 0 and odd. If $f \in L^1(K)$ then $f \in H^1(K)$ iff $(\pi \hat{f})^\sim \in L^1(K)$.

Key words and phrases. Characterizations of Hardy spaces, conjugate systems, counter-examples, even multipliers.

Research supported in part by the Army Research Office (Durham) under Grant No. DA-ARO-D-31-124-72-G143.
The "only if" part of the proof is in Chao [2]. The "if" part follows from [3, Theorem 2] and [2, Theorem 3.1 and example (i), p. 282].

The "if" part of the proof of Theorem B depends on the fact that \(n \) is an odd function. Taibleson and Gandulfo investigated this point and have shown Theorem B fails if \(n \) is even.

Theorem 1. Suppose \(\lambda \) is a multiplicative character on \(K \) that is unitary, ramified of degree 1, homogeneous of degree 0 and even. Then, there is a real-valued function \(g, g \in L^1(K) \) such that \(\lambda \hat{g} = \hat{g} \) and \(g^* \not\in L^1(K) \).

Thus, \(g \) and \((\lambda \hat{g})^\sim \in L^1(K) \) but \(g \not\in H^1(K) \). If the local class field of \(K \) is odd and of order not equal to 3 (e.g., a \(p \)-adic field with \(p \neq 2 \) or 3) then there is a character \(\pi \) on \(K \) that satisfies the conditions of Theorem B while \(\pi^2 \) satisfies the conditions of Theorem 1. Note that \(f \rightarrow (\pi^2 \hat{f})^\sim \) is bounded from \(H^1 \) into itself (Chao [2]).

This result suggested that a similar investigation be made of the multiplier \(e^{2i\theta} \) on \(\mathbb{R}^2 \). Note that \(f \rightarrow (e^{2i\theta} \hat{f})^\sim \) is bounded from \(H^1 \) into itself (Fefferman and Stein [5, p. 190]). Recently it has been conjectured by Fefferman [4] that any "nice" multiplier should characterize \(H^1 \) in the sense of Theorem A. In particular, \(e^{2i\theta} \) is a usual example of such a "nice" multiplier. Garcia-Cuerva has investigated this problem and obtained the following result:

Theorem 2. There is a real-valued, radial function \(g, g \in L^1(\mathbb{R}^2) \) such that \((e^{2i\theta} g)^\sim \in L^1(\mathbb{R}^2) \) but \(g \not\in H^1(\mathbb{R}^2) \).

We now briefly sketch proofs of Theorems 1 and 2.

Lemma 1. Let \(\lambda \) be as in Theorem 1. Then there exists a finite Borel measure \(\mu \), supported on \(\mathfrak{D} \) (the ring of integers in \(K \)) such that \(\mu \) is singular, \(\mu(\mathfrak{D}) = 0 \) and \(\lambda \hat{\mu} = \hat{\mu} \).

Theorem 1 follows from Lemma 1. We note that \(\mu^* \in L^1 \), where \(\mu^*(x) = \sup \{ |\mu(x, k)| \} \). Also \(\sup |\mu(\cdot, k)|_1 < \infty \). Using the fact that \(\mu(x, k) \) is supported on \(\mathfrak{D} \times \mathbb{Z} \) we define \(f(x) = \sum_{k=-\infty}^{\infty} a_k \mu(x + c_k, k) \) where \(\{ c_k \} \) are coset representatives of \(\mathfrak{D} \) in \(K \). If \(\sum |a_k| < \infty \) we see that \(f \in L^1(K) \) and \(\lambda \hat{f} = \hat{f} \).

To construct the measure \(\mu \) we need to construct a regular function \(\mu(x, k) \) on \(K \times \mathbb{Z} \) such that \(\mu(x, k) \) is supported on \(\mathfrak{D} \times \mathbb{Z} \), \(\int_{\mathfrak{D}} \mu(x, k)dx = 0 \) for all \(k \), \(\| \mu(\cdot, k) \|_1 \leq A \) and \(\| \mu(\cdot, k) - \mu(\cdot, k - 1) \|_1 = B, k = -1, -2, \ldots \), for positive constants \(A \) and \(B \). (See [6, IV(1.8d) and (1.9b)].)

One now observes that if \(\chi \) is an additive character on \(K \) that is nontrivial on \(\mathfrak{D} \), but is trivial on \(\mathfrak{J} \) (the maximal ideal in \(\mathfrak{D} \)) then

\[
g(x) = \begin{cases} \text{Re} \chi(x), & x \in \mathfrak{D}, \\ 0, & x \notin \mathfrak{D}, \end{cases}
\]
has the property that \(\lambda \hat{g} = \hat{g} \) whenever \(\lambda \) is as in Theorem 1, \(\mu(x, k) \) is constructed by "patching together" various translations and dilations of \(g \).

For a sketch of the proof of Theorem 2 we will identify \(\mathbb{R}^2 \) with \(\mathbb{C} \) in the usual way: \((x_1, x_2) \leftrightarrow re^{i\theta} = z \).

For \(f \in L^1(\mathbb{C}) \) let \(\tilde{f}(\omega) = \text{P.V.} \int_C f(w - z) \frac{dz}{z^2} \). Then, \(\tilde{(f)} = e^{2i\theta} \tilde{f} \).

We now assume that \(f \) is radial; i.e., \(f(z) = g(|z|) \) for some \(g \). We then show that if \(f \) is radial on \(\mathbb{C} \) then \(f \in H^1(\mathbb{C}) \) iff \(rg(r) \in H^1 \) where \(rg(r) \) can be viewed as either a function defined on \([0, \infty)\) or as an even function on \(\mathbb{R} \). Finally we show that

\[
\tilde{f}(re^{i\theta}) = \pi e^{2i\theta} \left\{ \frac{2}{r^2} \int_0^r g(s)s \, ds - g(r) \right\}.
\]

Thus, we see that we need to find a function \(\varphi \in L^1(0, \infty) \) such that

\[
\frac{1}{r} \int_0^r \varphi(s) \, ds \in L^1(0, \infty) \quad \text{but} \quad \varphi \in H^1(0, \infty).
\]

Let \(I_{[a,b]} \) be the characteristic function of the interval \([a, b]\), and let \(l_k = k I_{[k,k+1/k]} - (1/k)I_{[k+1/k,k+2/k]} \). We see that \(\int_0^\infty |l_k| = 2, \int_0^1 l_k = 0, \int_0^\infty (1/r) \int_0^r l_k |dr| < 1 \). We see that there is a \(C > 0 \) such that if \(k \) is large enough \(n_0 = \sqrt[k]{\ln k} \geq C \ln k \). A little calculation shows that if \(n_0 \) is large enough, then \(\varphi = \sum_{n=0}^{\infty} (1/n^2)I_{n_0 \leq n} \) has the required properties.

As a final comment, we observe that the formula for \(\tilde{f}, f \) integrable and radial extends easily to finite Borel measures that are radial. Apply that result to the singular measure \(\mu \) that has measure 1 uniformly distributed on the unit circle in \(\mathbb{C} \) and measure \(-1\) uniformly distributed on the circle of radius two. It is easy to check that \(\tilde{\mu} \) is a singular measure. Together with the result of Lemma 1 we see that the conjugate systems induced by the multipliers \(e^{2i\theta} \) and \(\pi^2 \) (on the Euclidean plane or local fields respectively) fail to produce an F. and M. Riesz theorem in the sense: There is a finite Borel measure \(\mu \), such that the conjugate of \(\mu \) is also a finite measure, but \(\mu \) is not absolutely continuous.

REFERENCES

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI 63130