DIRECT SUM PROPERTIES
OF QUASI-INJECTIVE MODULES

BY K. R. GOODEARL

Communicated by Barbara Osofsky, October 15, 1975

Abstract. A functorial method is described by which certain problems can be transferred from quasi-injective modules to nonsingular injective modules. Applications include the uniqueness of \(n \)th roots: If \(A \) and \(B \) are quasi-injective modules such that \(A^n \cong B^n \), then \(A \cong B \).

All rings in this paper are associative with unit, all modules are unital right modules, and endomorphism rings act on the left. The letter \(R \) denotes a ring. We use \(\mathcal{J}(\cdot) \) to denote the Jacobson radical.

Recall that a module \(A \) is quasi-injective provided any homomorphism of a submodule of \(A \) into \(A \) extends to an endomorphism of \(A \). For example, all injective modules and all semisimple (completely reducible) modules are quasi-injective.

Theorem 1. Let \(A \) be a quasi-injective right \(R \)-module, and set \(Q = \text{End}_R(A) \). Then \(Q/\mathcal{J}(Q) \) is a regular, right self-injective ring, and idempotents can be lifted modulo \(\mathcal{J}(Q) \).

Proof. Regularity and idempotent-lifting were proved by Faith and Utumi [2, Theorems 3.1, 4.1]. Self-injectivity was proved by Osofsky [6, Theorem 12] and Renault [7, Corollaire 3.5].

Proposition 2. Let \(A \) be a quasi-injective right \(R \)-module, and set \(Q = \text{End}_R(A) \). Let \(\mathcal{U} \) denote the category of all direct summands of finite direct sums of copies of \(A \), and let \(\mathcal{P} \) denote the category of all finitely generated projective right \((Q/\mathcal{J}(Q)) \)-modules. Then there exists an additive (covariant) functor \(F: \mathcal{U} \rightarrow \mathcal{P} \) with the following properties.

(a) For all \(B, C \in \mathcal{U} \), the induced map \(\text{Hom}_\mathcal{U}(B, C) \rightarrow \text{Hom}_\mathcal{P}(F(B), F(C)) \) is surjective.

(b) Given any \(P \in \mathcal{P} \), there exists \(B \in \mathcal{U} \) such that \(F(B) \cong P \).

(c) A map \(f \in \mathcal{U} \) is an isomorphism if and only if \(F(f) \) is an isomorphism in \(\mathcal{P} \).

Proof. If \(\mathcal{P}_0 \) denotes the category of all finitely generated projective right \(Q \)-modules, then \(\text{Hom}_\mathcal{R}(A, \cdot) \) defines a category equivalence \(G: \mathcal{U} \rightarrow \mathcal{P}_0 \). Second, \((\cdot) \otimes_Q (Q/\mathcal{J}(Q)) \) gives us an additive functor \(H: \mathcal{P}_0 \rightarrow \mathcal{P} \), and we set \(F = HG \).
Properties (a) and (c) hold without any hypotheses on A, while (b) follows from the regularity of $Q/J(Q)$ and the fact that idempotents lift modulo $J(Q)$. □

Over a regular, right self-injective ring, all finitely generated projective right modules are injective and nonsingular. Thus the functor F in Proposition 2 enables us to transfer problems from the quasi-injective module A to the nonsingular injective module $F(A)$.

Theorem 3. Let A, B be quasi-injective right R-modules, and let n be a positive integer.

(a) If A^n is isomorphic to a direct summand of B^n, then A is isomorphic to a direct summand of B.

(b) If $A^n \cong B^n$, then $A \cong B$.

Proof. Setting $Q = \text{End}_R(B)$, we use Proposition 2 to transfer the problem to nonsingular injective right $(Q/J(Q))$-modules, where the required properties follow from [5, Proposition 9.1].

Definition. A module A is **directly finite** provided A is not isomorphic to any proper direct summand of itself.

Theorem 4 [1, Proposition 5]. Let A be a directly finite quasi-injective right R-module. If B and C are any right R-modules such that $A \otimes B = A \otimes C$, then $B \cong C$.

Proof. If P is any directly finite nonsingular injective module, then [8, Corollary 8] (or [5, Theorem 3.8]) shows that isomorphic direct summands of P have isomorphic complements. Using Proposition 2, the module A has the same property. In addition, [3, Theorem 3] shows that A has the exchange property, hence cancellation follows from [4, Theorem 2].

Corollary 5. If A_1, \ldots, A_n are directly finite quasi-injective right R-modules, then $A_1 \oplus \cdots \oplus A_n$ is directly finite (but not necessarily quasi-injective).

Proof. Obviously cancellation carries over from the A_i to their direct sum. On the other hand, $\mathbb{Z}/2\mathbb{Z}$ and \mathbb{Q} are directly finite quasi-injective \mathbb{Z}-modules whose direct sum is not quasi-injective. □

Theorem 6. If A is a quasi-injective right R-module, then there exists a decomposition $A = B \oplus C$ such that B is directly finite and $C \cong C^2$.

Proof. The corresponding decomposition for nonsingular injective modules is given by [5, Proposition 8.4 and Theorem 7.2]. □

Corollary 7. Let A be a quasi-injective right R-module. Then A is directly finite if and only if A has no nonzero direct summands C for which $C \cong C^2$. □
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112