In this note we define "homology groups" relative to the flat site, and list some of their properties, in the case that the base scheme is algebraic over a field.

X_{fl} denotes the big f.p.p.f. site over a scheme X and $S(X_{fl})$ the corresponding category of sheaves. $S = \text{spec } k$, where k is a field of characteristic p. $A(al)$ denotes the category of commutative algebraic group schemes over S and $A(u, f)$ $\supset A(u) \supset A(uf) \supset A(f)$ the subcategories consisting of those affine groups which are respectively unipotent or finite, unipotent, unipotent and finite, finite. The letter A always stands for one of these categories and Pro-A for the corresponding pro-category. The notations for derived categories are as in [6].

1. **Theorem** (Universal Coefficient Theorem). For any morphism $\pi: X \to S$ of finite type and any A, there exists a complex $L_s(X/S, A)$ in $K^-(\text{Pro}-A)$ such that:
 (a) $L_s(X/S, A)$ is a projective object, all s;
 (b) $\text{Hom}_{\text{Pro}-A}(L_s(X/S, A), N) \cong R\pi_*N_X$ in $D^+(S(S_{fl}))$ for all N in A.

Moreover, $L_s(X/S, A)$ is unique, up to isomorphism, in $K^-(\text{Pro}-A)$.

Proof. Choose a conservative family of points for X_{fl}, and let $C^*(F)$ be the corresponding Godement resolution of a sheaf F [1, XVII 4.2]. Choose L_s to pro-represent the functor $N \mapsto \Gamma(X, C^s(N_X)): A \to Ab$.

2. **Corollary.** Write $H_s(X/S, A)$ for $H_s(L_s(X/S, A))$. There is a spectral sequence

 \[\text{Ext}_{\text{Pro}-A}^r(H_s(X/S, A), N) \Rightarrow H^{r+s}(X_{fl}, N_X) \]
 for all N in A.

3. **Definition.** $L_s(X/S, A)$ is the flat homology complex of X/S relative to A, and $H_s(X/S, A)$ is the sth flat homology group.

4. **Remarks.** (a) Theorem 1 is basically as conjectured by Grothendieck [5, p. 316].
 (b) $L_s(X/S, A)$ and $H_s(X/S, A)$ are covariant functors in X/S.
 (c) If $\omega_0: A(al) \to A(f)$ is the functor taking a group scheme to its maximal finite quotient, then $\omega_0(L_s(X/S, A(al))) = L_s(X/S, A(f))$. Thus there

1 Supported by NSF at Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France.
is a third-quadrant spectral sequence \(\omega_r(H^s_s(X/S, A(\mathcal{f}))) \Rightarrow H_{r+s}(X/S, A(\mathcal{f})) \) where \(\omega_r = L^r \omega_0. \)

5. **THEOREM.** Assume \(k \) to be algebraically closed and let \(M \) be the functor taking a group scheme to its Dieudonné module (in the sense of [4, III]). Then

\[
M(L_s(X/S, A(u, f))) = H_s(X_{\text{Zar}}, W_{f}) \oplus (H^s(X_{f1}, \mu_p^\infty) \otimes \mathbb{Z} W(k)),
\]

where \(W_n \) is the group scheme of Witt vectors of length \(n \) and \(W = \lim_{\to} W_n(O_X) \) and \(W(k) = \lim_{\to} W_n(k) \).

PROOF. Immediate from the definitions of \(L \) and \(M \).

6. **COROLLARY.** \(M(H^s_s(X/S, A(u, f))) = H^s_s(X_{\text{Zar}}, W_{f}) \oplus H^s_s(X_{f1}, \mu_p^\infty) \otimes \mathbb{Z} W(k) \).

PROOF. "\(\lim_{\to} \)" \(W_n \) and "\(\lim_{\to} \)" \(\mu_p^n \) behave as injectives in \(\mathbb{A} \).

7. **REMARK.** \(M(H_{-}) \) is equal to the group \(I(X) \) studied in [7, §4].

8. **THEOREM.** Assume \(k \) to be algebraically closed and \(X/S \) to be proper. Then \(L_s(X/S, A(u)) \) is isomorphic (in \(K^- (\text{Pro-} A(u)) \)) to \(L_s(X/S, A(uf)) \).

PROOF. \(H^s_s(X/S, A(u)) \in \text{Pro-} A(uf) \) for otherwise \(H^s_s(X, O_X) \) would have infinite dimension over \(k \).

9. **THEOREM.** Write \(N^- \) for the formal group associated to an affine group scheme \(N \) by Cartier duality (see [4, II.4]), and write \(H^s_s \) for \(H^s_s(L_s) = H^s(L_s^-) \) where \(L_s^- = L_s(X/S, A(u)) \). Then \(H^s_s \) is a connected formal group of finite-type (see [4, p. 35]) and represents the functor of finite \(S \)-schemes.

\[
T \mapsto \ker(T, R^s_{\pi*} G_m) \rightarrow \Gamma(T_{\text{red}}, R^s_{\pi*} G_m))
\]

PROOF. Regard \(U = \ker(G_m, T \mapsto G_{m, T_{\text{red}}}) \) as a sheaf on \(T_{\text{red}} \), and use (8).

10. **COROLLARY.** Write \(\Phi^s(T) = \ker(H^s_s(X_T, G_m) \rightarrow H^s_s(X_{T_{\text{red}}}, G_m)) \). If \(\Phi^s^{-1} \) is a formally smooth functor then \(\Phi^s \) is represented by a formal group.

PROOF. Immediate from the theorem.

11. **REMARKS.** (a) Intuitively (9) says that \(L^- \) represents \(R^- \pi* G_m \) infinitesimally.

(b) Generalizations of (10), but not (9), may be found in [2].

12. **THEOREM.** Assume that \(k \) is algebraically closed, \(X \) is projective and smooth over \(k \), and \(p > \dim(X) \). Then

\[
\text{Hom}_W(K/W, M(H^s_s(X/S, A(f)))) \otimes_W K \cong (H^s_s(X/W, O_{X/W}) \otimes_W K)_{[0,1]}
\]
as \(F \)-isocrystals, where \(W = W(k) \), \(K = \) field of fractions of \(W \), and the right-hand term is the part of crystalline cohomology with slopes between 0 and 1 (inclusive).

Proof. Follows from [3] and (6).

13. **Remarks.** (a) The last theorem states that (modulo torsion) the knowledge of the flat cohomology of finite constant group schemes on \(X \) is equivalent to the knowledge of the part of crystalline cohomology with slopes between 0 and 1.

(b) (12) differs from the “hope” expressed by Grothendieck [5, p. 316].

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104