ON L^1 CONVERGENCE OF CERTAIN COSINE SUMS

BY JOHN W. GARRETT1 AND ČASLAV V. STANOJEVIĆ

Communicated February 15, 1975

Abstract. It is shown that to a certain cosine series f, a Rees-Stanojević cosine sum g_n can be associated such that g_n converges to f pointwise, and a necessary and sufficient condition for L^1 convergence of g_n to f is given. As a corollary to that result we have a generalization of the classical result of this kind. Other corollaries are given concerning the well-known integrability conditions.

This paper gives an analogue for modified cosine sums of the classical result concerning L^1 convergence of a Fourier sine series. Rees and Stanojević [1] introduced these cosine sums that approximate their pointwise limit “better” than the classical cosine series since they converge in the L^1 metric space to their limit when the classical cosine series may not.

LEMMA 1. Let $f(x) = \lim_{n \to \infty} f_n(x)$ where $f_n(x) = \frac{1}{2}a(0) + \sum_{k=1}^{n} a(k)\cos kx$, \[\lim_{n \to \infty} a(n) = 0, \quad \text{and} \quad \sum_{k=0}^{n} |\Delta a(k)| < \infty. \] Let $g_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a(k) + \sum_{k=1}^{n} \sum_{j=k}^{\infty} \Delta a(j)\cos kx$. Then $\lim_{n \to \infty} g_n(x) = f(x)$.

THEOREM 1. Let f, f_n, and g_n be as defined in Lemma 1. Then g_n converges to f in the L^1 metric if and only if given $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $\int_{0}^{\infty} |\Delta a(k)D_k(x)| < \epsilon$ for all $n \geq 0$, where $D_k(x)$ is the Dirichlet kernel.

COROLLARY 1. Let f_n and f be as defined in Lemma 1. If for $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $\int_{0}^{\infty} |\sum_{k=n+1}^{\infty} \Delta a(k)D_k(x)| < \epsilon$ for all $n \geq 0$ then f_n converges to f in the L^1 metric if and only if $\lim_{n \to \infty} a(n)\log n = 0$.

COROLLARY 2. Let f and g_n be as defined in Lemma 1. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) < \infty$, then g_n converges to f in the L^1 metric.

COROLLARY 3. Let f and g_n be as defined in Lemma 1. If $\sum_{k=1}^{\infty} |\Delta a(k)|\log k < \infty$, then g_n converges to f in the L^1 metric.

COROLLARY 4. Let f and g_n be as defined in Lemma 1. If $a(n) = b(n) + c(n)$ where $\lim_{n \to \infty} b(n) = \lim_{n \to \infty} c(n) = 0$, $\sum_{n=1}^{\infty} |\Delta b(n)|\log n < \infty$, and $\sum_{n=1}^{\infty} |\Delta^2 c(n)|(n+1) < \infty$, then g_n converges to f in the L^1 metric.

AMS (MOS) subject classifications (1970). Primary 42A20, 42A32.

Key words and phrases. L^1 convergence of cosine sums.

1Portions of these results appear in a doctoral thesis of John W. Garrett at the University of Missouri-Rolla in 1974.

Copyright © 1975, American Mathematical Society
Corollary 5. Let f and g_n be as defined in Lemma 1. If $a(n) = \alpha(n)\beta(n)$ where $\sum_{n=1}^{\infty} |\Delta \alpha(n)| < \infty$, $|\beta(n)| \leq M$, $\sum_{n=1}^{\infty} |\Delta^2 \beta(n)|(n + 1) < \infty$, and $\sum_{n=1}^{\infty} |\beta(n)\Delta \alpha(n)| \log n < \infty$, then g_n converges to f in the L^1 metric.

Proofs and details of these results will appear elsewhere.

Reference