CONFORMAL MAPS ON HILBERT SPACE

BY MELVYN HUFF

Communicated February 15, 1975

1. Introduction. In [1] Nevanlinna gave a simple proof of the following theorem of Liouville. (Precise definitions appear below.)

THEOREM 1. Suppose \(U \) is a connected open set in a real Hilbert space \(H \) of dimension \(\geq 3 \) (including \(\infty \)) and \(f: U \to H \) is \(C^4 \) and conformal. Then \(f \) is either

(a) an affine map whose linear part is a constant multiple of a unitary operator,

(b) an inversion with respect to a sphere,

(c) \(f_1 \circ f_2 \) where \(f_1 \) is of type (a) and \(f_2 \) is of type (b).

REMARKS. (i) The dimension of \(H \) must be \(\geq 3 \) because every holomorphic map on \(\mathbb{C} \) with a nowhere zero derivative is conformal.

(ii) For \(\mathbb{R}^n \), the theorem is known even for \(f \) just \(C^1 \) [2].

(iii) The proof of Nevanlinna depends on \(f \) being \(C^4 \).

In this paper we outline how a technique in [3], when recognized as applying to conformal mappings and suitably modified, can be used to prove the theorem with \(f \) only \(C^3 \).

2. Notation and definitions. \(H \) will be a real infinite dimensional Hilbert space and \(U \) a connected open subset. A map is \(C^n \) if it is \(n \) times continuously Fréchet differentiable as in [4]. A \(C^1 \) function \(f: U \to H \) is called conformal if \(Df_x \) is a linear isomorphism and there is a function \(c: U \to \mathbb{R} \) such that

\[
\langle Df_x(h_1), Df_x(h_2) \rangle = c(x) \langle h_1, h_2 \rangle
\]

for all \(x \) in \(U \) and all \(h_1, h_2 \) in \(H \). (This definition is merely a reformulation of the more geometric definition that says \(f \) preserves the angle between two curves meeting at a point.) Banach and Hilbert manifolds are defined as in [4].

By an inversion with respect to the sphere \(\{ x \in H: \| x - p \| = r \} \) I mean the map \(x \to x' \) where

(i) \(\| x - p \| \| x' - p \| = r^2 \) and

(ii) \(x \) and \(x' \) lie on the same ray originating at \(p \). The analytic form of such an inversion is

\[
x \to r^2(x - p)\| x - p \|^{-2} + p.
\]
3. **Outline of the proof.** (1) We develop the theory of connections for Banach manifolds and specialize to the case of Riemannian connections for a C^3 Hilbert manifold. For each chart $(W, \psi: W \to H)$ of the manifold a C^1 function Γ, called the Christoffel function, is defined on $\psi(W)$ such that $\Gamma(y)$ is a continuous H-valued bilinear map on H for each y in $\psi(W)$. The collection of such Γ (together with a coherence property on the overlap of charts) determines and is determined by the connection.

(2) Let $d(x) = 1/\sqrt{c(x)}$. (Since Df_x is one-one, $c(x)$ is not zero.) For example if f is the affine map $f(x) = rL_0(x) + h_0$ where r is real, L_0 unitary and $h_0 \in H$, we have $d(x) = 1/r$. On the other hand for the inversion

$$f(x) = r^2(x-p)\|x-p\|^2 + p$$

we have $d(x) = \langle x - p, x - p \rangle/r^2$.

Since Hilbert space with the inner product as Riemannian metric has zero curvature we get the following equation for d:

(*) \[2D^2d_x(h_1, h_2) = 2Dd_x(h_1)Dd_x(h_2) + Dd_x[\Gamma_x(h_1, h_2)]. \]

To derive this we use the fact that the dimension of H is ≥ 3.

(3) We prove that in a neighborhood of each point x_0, the above equation has a unique solution

(**\) \[d(x) = A (x - x_0, x - x_0) + \langle b, x - x_0 \rangle + C \]

where $C = d(x_0)$, b is the element in H corresponding to Dd_{x_0} under the canonical isomorphism of H with its dual H^* and $A = \langle b, b \rangle/4C$.

The method of proof is to start at x_0 where (**) is true and then to show that equality continues as we move in any direction. Pick a unit vector u and define $g_1(t) = d(x_0 + tu)$. Using (*) the function $K_1(t) = [g_1(t), Dg_1(t)] \in R \times H^*$ is shown to satisfy a differential equation of the form $K'(t) = F[t, K(t)]$ with initial condition $K(0) = [d(x_0), Dd_{x_0}]$. Letting $g_2(t) = A (tu, tu) + \langle b, tu \rangle + C$ we verify that $K_2(t) = [g_2(t), Dg_2(t)]$ satisfies the same differential equation and initial condition. The equality of g_1 and g_2 follows from uniqueness.

(4) Using the connectedness of U we get that the local solution in (3) is actually a global solution for d.

(5) We show that if $f: U \to H$ and $g: U \to H$ are C^3 conformal maps such that g is one-one and $d_f = d_g$ (where d_f is the d corresponding to f), then there is a vector h in H and unitary operator L such that $f = L \circ g + h$.

(6) From (4) we know that $d(x) = A (x - x_0, x - x_0) + \langle b, x - x_0 \rangle + C$.

Case 1. $b = 0$ and $A = \langle b, b \rangle/4C = 0$ in which case $d(x) = C$ has the same form as the d for an affine map as in (2), if $C = 1/r$.

Case 2. $b \neq 0$ and thus $A \neq 0$. Then $d(x) = \langle x - p_0, x - p_0 \rangle/r$ where $r = 4C/|b, b|$ and $p = x_0 + 2Cb/(b, b)$. This is the same form as the d for an inversion as in (2) above.
(7) Combining (6) with (5) we get our theorem.

REFERENCES

p. 85.

MR 27 #5192.

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, MEDFORD, MASSACHUSETTS 02155

Current address: 329A Summit Ave., Brookline, Massachusetts