FIXED POINTS OF DISK ACTIONS

BY ROBERT OLIVER

Communicated October 30, 1975

As a sequel to a previous announcement [3], the author can now give a complete classification up to homotopy type of which spaces can occur as fixed point sets of smooth actions of a given compact Lie group on disks. The result is contained in Theorems 1 to 3 below. For a group G, G_0 denotes its identity component.

Theorem 1. Let G be a compact Lie group, and F a finite CW complex. Then there exists a smooth action of G on a disk with fixed point set having the homotopy type of F if and only if:

1. $G \cong T^n$ ($n \geq 1$): F is \mathbb{Z}-acyclic;
2. G_0 a torus and $|G/G_0| = p^a$ (p prime, $a \geq 1$): F is \mathbb{Z}_p-acyclic,
3. G_0 not a torus or G/G_0 not of prime power order: $\chi(F) \equiv 1 \pmod{n_G}$

for some fixed integer n_G.

In order to describe the calculations of n_G, some classes of finite groups are defined, as in [3] and [4]. G^1 denotes the class of all G with normal subgroup P of prime power order, such that G/P is cyclic. For q prime, G^q denotes the class of all G with normal subgroup $H \in G^1$ of q-power index. Then one gets

Theorem 2. 1. If G_0 is not a torus, then $n_G = 1$.
2. If G_0 is a torus, then $n_G = n_{G/G_0}$.
3. If G is finite, then $n_G = 0$ if and only if $G \in G^1$; if $G \notin G^1$ then for any prime q, $q \nmid n_G$ if and only if $G \in G^q$.

In Theorem 1, the necessity of the conditions in (1) and (2) follow from standard Smith theory. Sufficiency follows in (2) from Jones [2], and in (1) is trivial ($G \ast F$ is contractible and can be thickened up to a disk action by Theorem 6 of [4]).

For finite G, the existence of n_G and the calculations in Theorem 2, part 3, were proven in [4]. Furthermore, if G_0 is a torus and $G \supseteq G_0$, then F clearly has the homotopy type of the fixed point set of a disk action of G if and only if it does the same for G/G_0, so $n_G = n_{G/G_0}$. The case where G_0 is nontoral will be dealt with below; the above theorems say that any finite homotopy type can occur as fixed point set for such G.

The following result, completing the calculation of n_G, was obtained in

Copyright © 1976, American Mathematical Society

279
Theorem 4 of [5] by studying the projective obstruction $\gamma_G(F)$ first introduced in [4].

Theorem 3. For any finite group G, $n_G = 4$ if and only if:

1. G is a semidirect product $0 \rightarrow \mathbb{Z}_n \rightarrow G \rightarrow \mathbb{Z}_2^k \rightarrow 0$ (n odd) given by an automorphism $\alpha \in \text{Aut}(\mathbb{Z}_n)$.
2. $G \notin G^1$, but the subgroup of index 2 is in G^1.
3. Letting α also denote the induced automorphism of \mathbb{Z}_n^k (the ring generated by the nth roots of unity), there is no unit $u \in (\mathbb{Z}_n^k)^*$ such that $\alpha(u) = -u$. Otherwise, n_G equals 0, 1 or a product of distinct primes.

Groups fulfilling conditions 1–3 do actually exist, the smallest being given by $\langle a, b : a^{15} = b^4 = e, bab^{-1} = a^2 \rangle$.

It remains to describe the case of groups with nontoral identity component; by Bredon’s construction [1, §1.8] it is enough to construct a fixed point free action of any such group on a disk. The following theorem provides some very specific examples of such actions. The concept of a family of subgroups is used, as defined by tom Dieck.

Theorem 4. Let G be a compact Lie group, and \mathcal{F} a nonempty family of subgroups. Then there exists a smooth action of G on a disk D such that D^H is a disk for $H \in \mathcal{F}$ and empty for $H \notin \mathcal{F}$, if and only if:

1. For any pair of subgroups $H < K$ in G, for which K/H has prime order, either both H and K are in \mathcal{F} or neither is.
2. \mathcal{F} is closed in the space of closed subgroups of G with the Hausdorff topology.

In particular, the family of subgroups H such that H_0 is a torus and H/H_0 solvable meets these conditions.

REFERENCES

5. ————, *Projective obstructions to group actions on disks* (to appear)