ON THE TAMAGAWA NUMBER OF QUASI-SPLIT GROUPS

BY K. F. LAI

Communicated by H. Rossi, December 1, 1975

1. Introduction. In this paper we give a formula for the Tamagawa number $\tau(G)$ (see [6]) of a connected semisimple quasi-split algebraic group G defined over an algebraic number field F. The method used is that of R. P. Langlands (see [2]).

Let A be the adeles of F; G_A the locally compact adele group of G in which the group G_F of F-rational points is embedded.

Let B be the Borel subgroup of G defined over F, and A the maximal torus of B defined over F. $\tau(A)$ is the Tamagawa number of A. L_F (resp. L_F^+) denotes the lattice of F-rational weights of G (resp. of the simply-connected form of G). Let c be the index $[L_F^+: L_F]$. Then the main formula is

THEOREM. $T(G) = c\tau(A)$.

2. Sketch of the proof. Let P be the orthogonal projection of $L^2(G_F \setminus G_A)$ onto the space of constant functions. Langlands [2] observes the simple relation:

\[(1, 1)(P\varphi^\sim, P\psi^\sim) = (\varphi^\sim, 1)(1, \psi^\sim)\]

where $\varphi^\sim, \psi^\sim \in L^2(G_F \setminus G_A)$ and (\cdot, \cdot) is the inner product on $L^2(G_F \setminus G_A)$.

As

\[(1, 1) = \int_{G_F \setminus G_A} dg,\]

the problem reduces to the computation of the remaining three terms in (1).

Let $G_v = \Pi_{v|\infty} G_{F_v}$ where F_v is the completion of F at the place v and \(v|\infty\) means that v is infinite. Let K_∞ be the maximal compact subgroup of G_∞, and $K_0 = \Pi_{v<\infty} G_{O_v}$ where \(v<\infty\) means that v is finite, O_v is the maximal compact subring of F_v and G_{O_v} is the compact subgroup of G_{F_v} consisting of elements with coefficients in O_v and whose determinants are units. Put

Key words and phrases. Computation of Tamagawa number, quasi-split algebraic group, Langland's calculation of fundamental domain, L-function, torus, Eisenstein series, Weil's conjecture.

This paper is based on the author's Ph. D. dissertation, written at Yale University under Professor G. D. Mostow. The problem and the approach were suggested by R. P. Langlands.
$K = K_\infty \cdot K_0$. Then there exists a finite set $\{g_i \in G_A | 1 \leq i \leq n\}$ such that

$$G_A = \bigcup_{i=1}^n B_A g_i K.$$

Let N be the unipotent radical of B, pick continuous functions φ, ψ defined on $N_A B_F \setminus G_A / K$ such that we have a Fourier integral expression

$$\varphi(g) = \int_{|\lambda|=\lambda_0} \Phi^\lambda(g) \, d\lambda$$

for a suitable quasi-character λ_0 of $A_F \setminus A_A$ and the series

$$\varphi^\sim(g) = \sum_{\gamma \in B_F \setminus G_F} \varphi(\gamma g)$$

converges to an element in $L^2(G_F \setminus G_A)$. Similarly, we have

$$\psi(g) = \int_{|\lambda|=\lambda_0} \Psi^\lambda(g) \, d\lambda.$$

The Φ, Ψ are functions in λ and g, and there exists a sesquilinear pairing $\langle \cdot, \cdot \rangle$ between these functions such that

$$\langle \varphi, 1 \rangle = \langle \Phi^\rho, 1 \rangle, \quad (1, \psi) = \langle 1, \Psi^\rho \rangle$$

where ρ is the half sum of the positive roots of G.

To evaluate the remaining terms $(P\varphi, P\psi)$, we introduce an unbounded self-adjoint operator A on the closed subspace L of $L^2(G_F \setminus G_A)$ generated by the functions φ^\sim with φ of the form indicated above. If $\mathbb{E}(x)$ is a right continuous spectral resolution of A, then we have

$$P = \mathbb{E}((\rho, \rho)) - \mathbb{E}(\rho, \rho) - 0,$$

$$\langle P\varphi^\sim, P\psi^\sim \rangle = \frac{1}{ct(A)} \lim_{s \to 1} \frac{\langle M(w, \rho^s) \Phi^\rho^s, \Psi^{\rho^s}_{w^\sim} \rangle}{L(s, A)},$$

where w is the element of the Weyl group that sends every positive root to negative root, s is a complex number, $L(s, A)$ is the L-function of A (see [4], [5]) and $M(w, \rho^s)$ is a linear map on a vector space of functions on $N_A B_F \setminus G_A / K$.

There exists a finite set S of places of F such that

$$M(w, \rho^s) \Phi^\rho^s(g) = \left(\prod_{v \notin S} \int_{N_{F_v}} \Phi^\rho^s(wn_v) \, dn_v \right) \left(\int_{N_S} \Phi^\rho^s(wn_sg_s) \, dn_s \right),$$

where $g = (g_v) \in G_A$ is such that $g_v = 1$ if $v \notin S$, $n_s \in N_S = \Pi_{v \in S} N_{F_v}$.

Let \overline{N} be the unipotent radical of the Borel subgroup opposite to B. Write $\overline{N}^w = w^{-1} N_w \cap \overline{N}$. Then we have

$$\int_{\overline{N}^w_{F_v}} \Phi^\lambda(n) \, d\overline{n} = \frac{\det(I - |\omega| \sigma \text{Ad} \hat{f}|_{\hat{w}})}{\det(I - \sigma \text{Ad} \hat{f}|_{\hat{w}})}.$$
where $\Phi^A(1) = 1$ (for notation see [3], [4]). Formula (10) is proved first for all rational rank one quasi-split groups by explicit computation and then for the general case by the method of Bhanu-Murti, Gindikin and Karpelevic [1]. From (10) we get

$$\lim_{s \to 1} \prod_{v \in S} \int_{N_{F_v}} \Phi^S(w_{n_v}) \ dn_v = \left(\lim_{s \to 1} \prod_{v \in S} L_v(s, A) \right) \left(\prod_{v \in S} \text{volume } G_0 v \right).$$

The remaining integral in (9) is calculated by comparing the decomposition of the measure on G_A according to the Iwasawa decomposition and the Bruhat decomposition. We get

$$\lim_{s \to 1} \int_{N_S} \Phi^S(w g_S) \ dn_S = \frac{\langle \Phi^A, 1 \rangle \Pi_{v \in S} L_v(1, A)}{\Pi_{v \in S} \text{volume } G_0 v}.$$

The theorem now follows immediately from (1), (2), (6), (8)–(12).

It follows from our theorem that Weil's conjecture on Tamagawa is true for quasi-split group.

REFERENCES

