Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF

Book Information

Author: R. W. Lardner
Title: Mathematical theory of dislocations and fracture
Additional book information University of Toronto Press, Toronto, 1974, xi+363 pp.

References [Enhancements On Off] (What's this?)

  • 1. B. A. Bilby and J. D. Eshelby, Dislocations and the theory of fracture, Fracture, vol. I, H. Liebowitz (editor), Academic Press, New York and London, 1968.
  • 2. A. L. Cauchy, Sur les équations qui expriment les conditions d'équilibre on les lois du mouvement intérieur d'un corps solide, élastique ou non élastique, Ex. Math. 3 (1828), 160-187; also in œuvres (2), 8, 195-226.
  • 3. J. N. Goodier, Mathematical theory of equilibrium cracks, Fracture, vol. II, H. Liebowitz (editor), Academic Press, New York and London, 1968.
  • 4. A. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy Soc. London Ser. A 221 (1921), 163-198.
  • 5. M. E. Gurtin, Linear theory of elasticity, 2nd ed., Handbuch der Physik, vol. VI, Springer-Verlag, Berlin, Heidelberg and New York, 1970.
  • 6. J. K. Knowles and T. A. Pucik, Uniqueness for plane crack problems in linear elastostatics, J. Elasticity 3 (1973), 155-160.
  • 7. J. K. Knowles and Eli Sternberg, An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack, J. Elasticity 3 (1973), no. 2, 67–107 (English, with German summary). MR 0475148 (57 #14767)
  • 8. J. K. Knowles and Eli Sternberg, Finite-deformation analysis of the elastostatic field near the tip of a crack: reconsideration and higher-order results, J. Elasticity 4 (1974), no. 3, 201–233 (English, with German summary). MR 0475149 (57 #14768)
  • 9. C. L. M. H. Navier, Mémoire sur les lois de l'équilibre et du mouvement des corps solides élastiques, Mem. Acad. Sci. Inst. France (2) 7 (1827), 375-393.
  • 10. G. C. Sih (ed.), Mechanics of fracture. Vol. 1, Noordhoff International Publishing, Leiden, 1973. Methods of analysis and solutions of crack problems; Recent developments in fracture mechanics. Theory and methods of solving crack problems. MR 0449095 (56 #7400)
  • 11. I. N. Sneddon and M. Lowengrub, Crack problems in the classical theory of elasticity, John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0258339 (41 #2986)
  • 12. Ian N. Sneddon, Mixed boundary value problems in potential theory, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1966. MR 0216018 (35 #6853)
  • 13. C. Somigliana, Atti. Accad. Naz. Lincei Rend. 23 (1914), 463.
  • 14. C. Somigliana, Atti. Accad. Naz. Lincei Rend. 24 (1915), 655.
  • 15. Vito Volterra, Sur l’équilibre des corps élastiques multiplement connexes, Ann. Sci. École Norm. Sup. (3) 24 (1907), 401–517 (French). MR 1509085
  • 16. J. R. Willis, Interfacial stresses induced by arbitrary loading of dissimilar elastic half-spaces joined over a circular region, J. Inst. Math. Appl. 7 (1971), 179–197. MR 0286352 (44 #3565)
  • 17. J. R. Willis. The penny-shaped crack on an interface, Quart. J. Mech. Appl. Math. 25 (1972), 367.

Review Information

Reviewer: Morton Lowengrub
Journal: Bull. Amer. Math. Soc. 82 (1976), 446-451
PII: S 0002-9904(1976)14038-4

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia