INFINITE LOOP MAPS AND THE COMPLEX J-HOMOMORPHISM

BY VICTOR SNAITH

Communicated by P. T. Church, December 23, 1975

ABSTRACT. We study the complex J-homomorphism $j: U \to SG$ as the composition of two infinite loop maps.

1. Introduction. Let p be an odd prime and let q be a prime generating the units of \mathbb{Z}/p^2. All spaces will be p-localized. The solution of the Adams conjecture establishes a commutative diagram of fibre sequences.

$$
\cdots \to U \xrightarrow{\psi^{-1}} U \xrightarrow{\omega} BU \oplus \xrightarrow{\psi^{-1}} BU \oplus \\
\cdots \to U \xrightarrow{j} SG \xrightarrow{SG/U} BU \oplus (1.1)
$$

Several, possibly different, τ have been constructed ([2], [5] and [8]). Given τ, then μ is unique. The fibre sequences are sequences of infinite loop maps and it is natural to ask whether (1.1) can be extended arbitrarily to the right—the infinite loop Adams conjecture. By [4] this would be true if τ were an infinite loop map. These results suggest strongly the validity of the conjecture.

In [2] an H-map, τ, is given. If F_q is the field with q elements the finite dimensional vector spaces over F_q under direct sum form a permutative category from which the infinite loopspace J^\otimes is constructed by the technique of [1]. Similarly SG is obtained from a category of finite sets under cartesian product. The forgetful functor gives the “discrete models” infinite loop maps $\delta: J^\otimes \to SG$.

Theorem 1. If τ is the map constructed in [2] then $\mu = \delta$ in (1.1).

J^\otimes is the infinite loop space obtained from a category of vector spaces of F_q under tensor product. Assigning to a set the vector space generated by its elements gives $\nu: SG \to J^\otimes$. Define Coker J^\otimes by the infinite loop fibering

$\xrightarrow{\pi} SG \xrightarrow{\nu} J^\otimes$.

Theorem 2. $\nu \circ f: J^\otimes \to J^\otimes$ is a homotopy equivalence for any map $f: J^\otimes \to SG$ such that $f_\#$ is nontrivial on π_{2p-3}.

Key words and phrases. J-homomorphism, infinite loop Adams conjecture, transfer, permutative category, discrete models map.

Copyright © 1976, American Mathematical Society
Theorem 3. In (1.1), $j = \delta \circ \omega$.

Combining this with Theorem 2 we easily obtain

Theorem 4 [9]. There is an equivalence of infinite loopspaces $\delta + \pi$:

$$J^\oplus \times \text{Coker } J^\oplus \rightarrow SG.$$

2. If the infinite loop Adams conjecture were true then there would exist an infinite loop map $J^\oplus \rightarrow SG$ satisfying Theorems 1, 3 and 4.

Theorems 2, 3 and 4 can be proved without mentioning τ at all, i.e. without the solution of the Adams conjecture. For example cf. [7, I].

Proof of Theorem 3. In [6] a cohomology theory, Ad_q^* is constructed satisfying

$$[X, Z \times J^\oplus] = Ad^0_q(X)$$

and giving an infinite loopspace structure to $Z \times J^\oplus$ extending the usual one on J^\oplus. $Ad^0_q(X)$ has a description in terms of isomorphisms of \mathbb{Z}/q-vector bundles

$$\theta: E^\otimes q \rightarrow E \oplus (E' \otimes N)$$

where E, E' are complex vector bundles over X and N is the complex regular representation of \mathbb{Z}/q. A similar theory constructed from isomorphisms, θ, such that

$$\mu(\theta): E^{\text{diag}} \rightarrow E^\otimes \rightarrow E \oplus (E' \otimes N) \rightarrow E$$

is a proper map is also Ad^*_q. Sending θ to the stabilization of $\mu(\theta)$ gives an exponential H-map,

$$\mu: \bigcup_{n > 0} (n) \times J^\oplus \rightarrow \bigcup_{n > 0} Q_n S^0,$$

where $Q_n S^0$ is the set of maps of degree q^n in $\Omega^\infty S^\infty$. It is easy to show explicitly that

$$\mu \circ \omega = j: U \rightarrow (0) \times J^\oplus \rightarrow Q_1 S^0 \rightarrow SG.$$

Also Ad^0_q has a transfer for cyclic coverings which admits an explicit bundle-theoretic description from which it is simple to see that μ commutes with cyclic covering transfers [3] of the two infinite loopspaces J^\oplus and SG. Since δ extends to an exponential H-map

$$\delta: \bigcup_{n > 0} (n) \times J^\oplus \rightarrow \bigcup_{n > 0} Q_n S^0$$

which commutes with transfers for finite coverings, Theorem 3 is a consequence of the following result.

Theorem 5. There is a unique exponential H-map $\mu: \bigcup_{n > 0}(n) \times J^\oplus \rightarrow \bigcup_{n > 0} Q_n S^0$ which commutes with p-fold cyclic covering transfers and maps $(n) \times J^\oplus \rightarrow Q_n S^0$.

Since \(\tau \) induces a unique \(\mu \) we may also deduce Theorem 3 from Theorem 1, once we acknowledge the existence of \(\tau \).

Proof of Theorem 1 (cf. [7, II]). \(\tau \) is described explicitly in terms of the geometry of fibre bundles of the form \(U(n)/N \to BN \to BU(n) \). The transfer on \(SG/U \) may be extended to the space \(\bigcup_{n \geq 0} (n) \times (SG/U) \). Furthermore \(\tau \) may be extended to an \(H \)-map

\[
\overline{\tau} : \bigcup_{n \geq 0} (n) \times BU(\Theta) \to \bigcup_{n \geq 0} (n) \times (SG/U),
\]

which maps \((n) \times BU(\Theta) \) to \((n) \times (SG/U) \). Also \(\overline{\tau} \) commutes with \(p \)-fold cyclic covering transfers. The proof of Theorem 1 is completed by means of the analogue of Theorem 5 for \(H \)-maps \(\bigcup_{n \geq 0} (n) \times J(\Theta) \to \bigcup_{n \geq 0} (n) \times (SG/U) \).

References

Division of Mathematical Sciences, Purdue University, West Lafayette, Indiana 47907