FORM OF SOLUTIONS
TO THE p-ADIC EQUATION $y' = 0$

BY GERALD S. STOLLER

Communicated by John W. Wrench, October 13, 1975

The solutions of $y' = 0$ over the real and/or complex numbers have long been known to be the constant functions. Here we shall present a form for any function, z, that maps a suitable subset of \mathbb{Q}_p, the complete field of p-adic numbers, into \mathbb{Q}_p (where p is a positive prime) and is differentiable with derivative zero everywhere. We shall also discuss the image-set of such a function.

This problem has been of interest ever since J. Dieudonné gave an example [1, p. 90], [2, p. 19], [4, pp. 35, 39] of a function, z_0, that maps \mathbb{Z}_p homeomorphically onto its image-set and yet has a zero derivative everywhere. M. van der Put has studied integration of p-adic valued functions [3] using the set of solutions to $y' = 0$ without determining this set [2, p. 20].

Let N be the set of nonnegative integers, let R be the set of real numbers, and let $R_{>b}$ be the set of all real numbers greater than the real number b. Let $C = \{0, 1, 2, 3, \ldots, p - 1\}$ and let \mathbb{Z}_p be the set of p-adic integers. Every p-adic integer has a canonical form $\sum \binom{a_j p^j}{j \in N}$, where each a_j is an element of C. z_0, the function of Dieudonné, is given by

$$z_0(\sum \binom{a_j p^j}{j \in N}) = \sum \binom{a_j p^{2j}}{j \in N}.$$

First we let f be a function mapping a subspace of \mathbb{Z}_p into \mathbb{Z}_p. It is easily shown that f is uniformly continuous (on its domain) iff

$$(\exists l : N \rightarrow N)(\forall n \in N)(\exists g_n : C^{l(n)} \rightarrow \mathbb{Z}_p)(\forall a \in C^N)$$

$$\sum \binom{a_j p^j}{j \in N} \in \text{Dom}(f) \Rightarrow$$

$$f(\sum \binom{a_j p^j}{j \in N}) = \sum \binom{g_n(a_0, a_1, a_2, a_3, \ldots, a_l(n) - 1)p^n}{n \in N}.$$

Now the concept of uniform differentiability is introduced; it bears the same relationship to differentiability that uniform continuity has to continuity. Formally, f is uniformly differentiable on D' iff D' is a subset of $\text{Dom}(f)$ that contains no isolated points of $\text{Dom}(f)$ and
558

(∀ ∈ ℝ>0) (∃ δ ∈ ℝ>0) (∀ x ∈ D') (∃ w ∈ Q_p) (∀ y ∈ Dom(f))

0 < |y - x| < δ => |(f(y) - f(x))/(y - x) - w| < ε.

Second, we show that a function f is uniformly differentiable with derivative zero everywhere if and only if it has the form (stated above) for uniformly continuous functions and \(n - l(n) \to \infty \) as \(n \to \infty \) (\(l \) may have to be chosen so that \(l(n) \) is the least value "that works"). Furthermore, the image-set of such a function has Jordan content zero, consequently it is nowhere dense.

However, there exist functions that map \(Z_p \) into \(Z_p \) and are differentiable with derivative zero everywhere, yet are not uniformly differentiable. One such function can be exhibited by putting \(C' = C\backslash\{0\} \) and defining \(z_1(x) \) on \(Z_p \) by \(z_1(x) = p^{2k} \) if, for some \(k \in \mathbb{N}, x \in C'p^k + C'p^{4k+4} + Z_p \) and \(z_1(x) = 0 \) otherwise. The least function \(l \) "that works" for \(z_1 \) is

\[
l(n) = \begin{cases}
0 & \text{if } n \text{ is odd,} \\
2n + 4 & \text{if } n \text{ is even.}
\end{cases}
\]

Third, a differentiable function with a continuous derivative on a measurable (with respect to a measure that is nonnegative, regular, and finite on compact sets) domain can have this domain expressed, except for a set of measure 0, as the union of a nondecreasing sequence of compact sets, on each of which the given function is uniformly differentiable (Shades of Egoroff's Theorem). As something of a converse, if \(f \) is a function and \(D \) is a nondecreasing sequence of sets on each of which \(f \) is uniformly differentiable, then \(f \) is differentiable on the union of \(D \).

Fourth and finally, the second and third results are combined to give a form for the solutions of \(y' = 0 \) over the \(p \)-adics.

In the course of the paper [5], uniform differentiability is related to other concepts of mathematics of the same ilk, e.g., uniform differentiability and bounded derivative imply uniform continuity.

Details will appear in the paper [5], and generalizations in another paper.

Both [5] and the current paper overlap slightly with [6, pp. 90–91]. There another form is given for a uniformly differentiable function defined on \(Z_p \) with derivative zero everywhere that takes its values in a valued field containing \(Q_p \).

REFERENCES

5. Gerald S. Stoller, *Form of solutions to the equation $y' = 0$ over p-adics* (to appear).

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY COLLEGE, FREDONIA, NEW YORK 14063

Current address: Department Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201