Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Global bifurcation theorems for nonlinearly perturbed operator equations


Author: John MacBain
Journal: Bull. Amer. Math. Soc. 82 (1976), 584-586
MSC (1970): Primary 46N05
DOI: https://doi.org/10.1090/S0002-9904-1976-14115-8
MathSciNet review: 0428141
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. A. Krasnosel'skiĭ, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 # 3464; 28 # 2414. MR 159197
  • 2. J. A. MacBain, Local and global bifurcation from normal eigenvalues, Ph. D. Thesis, Purdue Univ., 1974.
    3 J. A. MacBain, Global bifurcation theorems for noncompact operators, Bull. Amer. Math. Soc. 80 (1974), 1005-1009. MR 50 # 14403. MR 361961

  • 4. J. A. MacBain, Local and global bifurcation from normal eigenvalues, Pacific J. Math. 63 (1976). MR 415441
  • 5. R. D. Nussbaum, The fixed point index and fixed point theorems for k-set contractions, Ph.D. Thesis, Chicago, Ill., 1969.
  • 6. P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain Consortium Sympos. on Nonlinear Eigenvalue Problems (Santa Fe, N. M., 1971), Rocky Mountain J. Math. 3 (1973), 161-202. MR 47 # 9383. MR 320850
  • 7. C. A. Stuart, Some bifurcation theory for k-set contractions, Proc. London Math. Soc. (3) 27 (1973), 531-550. MR 333856

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 46N05

Retrieve articles in all journals with MSC (1970): 46N05


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1976-14115-8

American Mathematical Society