SINGULAR HAMMERSTEIN EQUATIONS AND MAXIMAL MONOTONE OPERATORS

By H. Brézis and F. E. Browder

Communicated by Alberto P. Calderón, April 8, 1976

Consider the nonlinear integral equation of Hammerstein type

\[u(x) + \int_{\Omega} k(x, y)f(y, u(y))\vartheta(dy) = h(x) \quad (x \in \Omega), \]

where \(h \) and the solution \(u \) lie in a space \(X \) of measurable functions on \(\Omega \). The Hammerstein equation is said to be regular if for

\[F(u)(y) = f(y, u(y)) \quad (y \in \Omega); \quad Kv(x) = \int_{\Omega} k(x, y)v(y)\vartheta(dy) \quad (x \in \Omega), \]

the operator \(KF \) is defined on all of \(X \), and singular otherwise.

In some recent papers (summarized in [2]), the writers have studied the existence theory for regular Hammerstein equations in \(L^p(\vartheta) \) with \(1 < p \leq +\infty \) under very general assumptions on \(K \) and \(F \). In later papers (cf. [4]), one of the writers has obtained general existence results for the singular case, using measure-theoretic arguments and mild compactness assumptions on \(K \). We present results here without compactness assumptions based on a new theorem on linear monotone operators.

Theorem 1. Let \(X \) be a reflexive Banach space, \(L_0 \) and \(L_1 \) linear monotone mappings from \(X \) into \(2^{X^*} \) with \(L_0 \subseteq L_1 \). Then there exists a maximal monotone linear map from \(X \) into \(2^{X^*} \) such that \(L_0 \subseteq L \subseteq L_1 \).

For single-valued, densely defined maps in Hilbert space, this coincides with a theorem of R. S. Phillips [6] obtained using ideas of M. Krein [5]. For reflexive Banach spaces, in general, we have as a corollary a result obtained in 1968 by one of the writers [1]:

Theorem 2. Let \(X \) be a reflexive Banach space, \(L \) a closed linear monotone map from \(X \) into \(2^{X^*} \). Then \(L \) is maximal monotone if and only if \(L^* \) is monotone.

We sketch the proof of Theorem 1 (detailed proofs are given in [3]). By a Zorn's Lemma argument we may construct a monotone linear map \(L \) with \(L_0 \subseteq L \subseteq L_1^* \) such that \(L \) is maximal monotone in the graph of \(L_1^* \). Let \(J \) be a duality map of \(X \) into \(X^* \) corresponding to a norm on \(X \) with \(X \) and \(X^* \) locally uniformly convex.

AMS (MOS) subject classifications (1970). Primary 47H05, 47G05; Secondary 47H15.

Copyright © 1976, American Mathematical Society
Let w_0 be any element of X^*. It suffices to find u_0 in X such that $w_0 \in (L + J)(u_0)$. For each finite-dimensional subspace M of X, let ξ_M be the injection map of M into X, $\xi_M^*: X^* \to M^*$. We form linear monotone mappings L_M and $L_{1,M}$ of M into 2^{M^*} with $L_M \subseteq (L_{1,M})^*$ by

$$L_M(x) = \xi_M^*(L(x)), \quad L_{1,M}(x) = \xi_M^*(L_1(x)).$$

We apply the multivalued finite-dimensional version of Phillips' theorem (a simple direct proof for which is given in [3]) to obtain a maximal monotone mapping K_M from M to 2^{M^*} such that $L_M \subseteq K_M \subseteq (L_{1,M})^*$. Hence, we may find u_M in M such that $\xi_M^*(w_0) \in K_M(u_M) + \xi_M^*(J(u_M))$.

For each $[u, w]$ in $G(L)$ and for each $[x, y]$ in $G(L)$, we have

$$\langle w_0 - J(u_M), u \rangle = \langle w, u_M \rangle,$$

(3)

$$\langle y + J(u_M) - w_0, x - u_M \rangle \geq 0.$$

(4)

The elements $\{[u_M, J(u_M)]\}$ are bounded since J is coercive. Since X is reflexive, we may assume a filter $\{[u_M, J(u_M)]\}$ converging weakly to $[u_0, y_0]$ in $X \times X^*$. Since equality (3) holds eventually for each $[u, w]$ in $G(L_1)$, we may take the limit to find that $\langle w_0 - y_0, u \rangle = \langle w, u_0 \rangle$ for all $[u, w]$ in $G(L_1)$. Hence $[u_0, w_0 - y_0]$ lies in $G(L_1^*)$. From inequality (4) which holds eventually for each $[x, y]$ in $G(L)$, we obtain

$$\lim \langle J((u_M), u_M) \rangle - \langle y_0, u_0 \rangle \leq \langle y + y_0 - w_0, x - u_0 \rangle.$$

(5)

Since J is pseudo-monotone, the left side is nonnegative. Since $[u_0, w_0 - y_0] \in G(L_1^*)$ and L is assumed maximal monotone in $G(L_1^*), [u_0, w_0 - y_0]$ lies in $G(L)$. Replacing $[x, y]$ by this element, it follows that the left side of (5) is zero, and hence $y_0 = J(u_0)$. Thus $w_0 - J(u_0) \in L(u_0)$, i.e. $w_0 \in (L + J)(u_0)$. Q.E.D.

The application to singular Hammerstein equations is made through the following more general theorem:

Theorem 3. Let β be a finite measure on Ω, X a reflexive Banach space with $L^\infty(\beta) \subseteq X \subseteq L^1(\beta)$, $L^\infty(\beta) \subseteq X^* \subseteq L^1(\beta)$. Let F be a hemicontinuous, monotone angle-bounded map of X into X^* with $0 \in \text{Int}(R(F))$. Let K be a bounded linear map of $L^1(\beta)$ into $L^1(\beta)$ with $\langle Kv, v \rangle \geq 0$ for all v in $L^\infty(\beta)$. Then for each h in X, there exists u in X such that $u + KF(u) = h$ and $\langle Kv - KF(u), v - F(u) \rangle \geq 0$ for all v in $L^\infty(\beta)$ with $Kv \in X$.

To prove Theorem 3, we may set $h = 0$ by a change of variables. Let L_1 be the mapping from X^* to X with effective domain $L^\infty(\beta)$ and with $L_1(v) = K'(v)$ where $K': L^\infty(\beta) \to L^\infty(\beta)$ is the dual of K. Then L_1 is monotone and L_1^* is a restriction of K. Let $K^#$ be the mapping from X^* to X with domain $D(K^#) = \{v \in L^\infty(\beta) \text{ and } Kv \in X\}$ and $K^#v = Kv$. Since $K^# \subseteq L_1^*$ we may find...
by Theorem 1, a maximal monotone operator L satisfying $K^* \subseteq L \subseteq L_1^*$. Finally one solves $0 \in L^{-1}(u) + F(u)$.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637