Quillen’s recent solution [4] of Serre’s problem (on projective modules over polynomial rings) is based on the following remarkable theorem.

Let \(K \) be a commutative ring, \(\text{max}(K) \) its set of maximal ideals, and \(T \) an indeterminate.

Theorem 1 (Quillen [4, Theorem 1]). Let \(M \) be a finitely presented \(K[T] \)-module and put \(M_0 = M/\text{T}M \). If \(M_m \cong M_0[T]_m \) for all \(m \in \text{max}(K) \), then \(M \cong M_0[T] \).

We have developed an axiomatic version of Quillen’s arguments, also using ideas of [1], which yields the following results, among others. Detailed proofs will appear elsewhere.

Theorem 2. Theorem 1 is valid with the word “module” replaced by “algebra”.

Theorem 1 follows from Theorem 2, applied to the symmetric algebra \(S(M) \).

Call a commutative \(K \)-algebra \(A \) invertible if, for some \(K \)-algebra \(B \), \(A \otimes_K B \) is a polynomial algebra \(K[X_1, \ldots, X_n] \). Then \(A \) admits an augmentation, \(0 \rightarrow \overline{A} \rightarrow A \rightarrow K \rightarrow 0 \), and the \(K \)-module \(JA = \overline{A}/\overline{A}^2 \) depends, up to isomorphism, only on \(A \). We say \(A \) is stably isomorphic to a \(K \)-algebra \(B \) if \(A \otimes_K C \cong B \otimes_K C \) for some invertible \(K \)-algebra \(C \).

Theorem 3. Let \(A \) be a finitely presented \(K \)-algebra.

(a) If \(A_m \) is a polynomial \(K_m \)-algebra for all \(m \in \text{max}(K) \) then \(A \) is a symmetric algebra \(S(P) \) of a projective \(K \)-module \(P \).

(b) If \(A_m \) is an invertible \(K_m \)-algebra for all \(m \in \text{max}(K) \) then \(A \) is invertible.

Corollary. Let \(A \) and \(B \) be invertible \(K \)-algebras. If \(JA \) and \(JB \) are stably isomorphic, and if \(A_m \) and \(B_m \) are stably isomorphic for all \(m \in \text{max}(K) \), then \(A \) and \(B \) are stably isomorphic.

Remarks. The title of the paper refers to part (a), which solves a problem posed in [2, p. 67], [3], [5, §6], and [6, p. 3]. In geometric language it asserts that every affine space bundle over \(\text{spec}(K) \) arises from a vector bundle. Part (b)
is proved by reducing it to part (a). Part (a) is proved by first constructing an augmentation \(A \to K \) and then applying the following general result, which has various other applications.

Theorem 4. Let \(A \) be a finitely presented (not necessarily commutative) \(K \)-algebra equipped with an augmentation, \(0 \to \widetilde{A} \to A \to K \to 0 \), and put \(\gamma A = \bigoplus_{n \geq 0} \widetilde{A}^n / \widetilde{A}^{n+1} \), the associated graded algebra. If \(A_n \cong \gamma A_n \) (as filtered algebras) for all \(m \in \text{max}(K) \), then \(A \cong \gamma A \).

References