Locally polynomial algebras are symmetric

Authors:
H. Bass, E. H. Connell and D. L. Wright

Journal:
Bull. Amer. Math. Soc. **82** (1976), 719-720

MSC (1970):
Primary 13B25; Secondary 14B99, 14E99

DOI:
https://doi.org/10.1090/S0002-9904-1976-14128-6

MathSciNet review:
0414533

Full-text PDF

References | Similar Articles | Additional Information

**1.**Hyman Bass and David L. Wright,*Localisation in the K-theory of invertible algebras*, J. Pure Appl. Algebra (to appear). MR**424789****2.**P. M. Eakin, Jr., and W. J. Heinzer,*A cancellation problem for rings*, Conf. on Commutative Algebra (Lawrence, Kansas, 1972), Lecture Notes in Math., vol. 311, Springer-Verlag, Berlin and New York, 1973, pp. 61—77.**3.**P. M. Eakin, Jr., and J. Silver,*Rings which are almost polynomial rings*, Trans. Amer. Math. Soc. 174 (1972), 425-449. MR 46 #9028. MR**309924****4.**Daniel Quillen,*Projective modules over polynomial rings*(to appear). MR**427303****5.**David L. Wright,*Algebras which resemble symmetric algebras*, Thesis, Columbia Univ., 1975. MR**401737****6.**David L. Wright,*Algebras which resemble symmetric algebras*(Proc. Queen's Univ. Conf. on Commutative Algebra, Kingston, Ontario, Canada, 1975), Queen's Papers in Pure and Appl. Math., no. 42, 1975, Kingston, Ontario, Canada. MR**401737**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
13B25,
14B99,
14E99

Retrieve articles in all journals with MSC (1970): 13B25, 14B99, 14E99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1976-14128-6