1. **Introduction.** In this note we determine the bordism groups A_n of orientation preserving diffeomorphisms of n-dimensional closed oriented smooth manifolds. These groups were introduced by W. Browder [1]. Winkelnkemper showed that each diffeomorphism of the sphere S^n is nullbordant [7]. On the other hand, he showed that A_{4k+2} is not finitely generated. Medrano generalized this result to A_{4k} [5]. For this he introduced a powerful invariant in the Witt group $W_\pm(Z, Z) (I_\pm$ in Medrano’s notation) of isometries of free finite-dimensional Z-modules with a symmetric (antisymmetric) unimodular bilinear form. The invariant is given by the middle homology modulo torsion, the intersection form and the isometry induced by the diffeomorphism. For a diffeomorphism $f: M \to M$ we denote this invariant by $I(M, f)$, the isometric structure of (M, f). It is a bordism invariant and leads to a homomorphism $I: A_{2k} \to W_{(-1)k}(Z, Z)$.

Neumann has shown that the homomorphism I is surjective, that $W_+(Z, Z) \otimes Q \cong Q^\infty$ and that $W_\pm(Z, Z)$ contains infinitely many summands of orders 2 and 4 [6]. On the other hand, $W_\pm(Z, Z)$ is a subgroup of $W_\pm(Z, Q)$, the Witt group of isometries of finite-dimensional Q-vector spaces. This group plays an important role in the computation of bordism groups C_{2k-1} of odd-dimensional knots, which can be embedded in $W_{(-1)k}(Z, Q)$. It is known that $W_\pm(Z, Q) \cong Z^\infty \oplus Z_2^\infty \oplus Z_4^\infty$ [3]. Thus the group $W_\pm(Z, Z)$ is also of the form $Z^\infty \oplus Z_2^\infty \oplus Z_4^\infty$.

It turns out that the isometric structure is essentially the only invariant for bordism of diffeomorphisms.

2. **Bordism of odd-dimensional diffeomorphisms.** Two diffeomorphisms (M_1, f_1) and (M_2, f_2) are called bordant if there is a diffeomorphism (N, F) on an oriented manifold with boundary such that $\partial(N, F) = (M_1, f_1) + (-M_2, f_2)$. The bordism classes $[M', f]$ form a group under disjoint sum, called Δ_n.

The mapping torus of a diffeomorphism (M, f) is $M_f = I \times M/(0, x) \sim (1, f(x))$. This construction leads to a homomorphism $\Delta_n \to \Omega_{n+1} ([M, f] \mapsto [M_f])$, where Ω_{n+1} is the ordinary bordism group of oriented manifolds.

In [4] we proved the following result.

AMS (MOS) subject classifications (1970). Primary 57D90.
Theorem 1. For $k > 2$ the map $[M, f] \mapsto ([M], [M_f])$ is an isomorphism $\Delta_{2k-1} \rightarrow \Omega_{2k-1} \oplus \hat{\Omega}_{2k}$, where $\hat{\Omega}_{2k}$ is the kernel of the signature homomorphism τ.

3. **The even-dimensional case.** Consider triples $(G, \langle , \rangle, h)$, where G is a finite-dimensional free \mathbb{Z}-module, \langle , \rangle a symmetric (resp. antisymmetric) unimodular bilinear form on G and h an isometry of (G, \langle , \rangle). $(G, \langle , \rangle, h)$ is called hyperbolic if there exists an invariant subkernel, i.e. a subspace $U \subset G$ with $U \subset U_1$, $2 \dim U = \dim G$ and $h(U) \subset U$. $(G, \langle , \rangle, h)$ and $(G', \langle , \rangle', h')$ are called bordant if $(G, \langle , \rangle, h) \oplus (G', -\langle , \rangle', h')$ is hyperbolic. This is an equivalence relation. The equivalence classes form a group under orthogonal sum, called $W_+ (\mathbb{Z}, \mathbb{Z})$ (resp. $W_- (\mathbb{Z}, \mathbb{Z})$).

The isometric structure of a diffeomorphism (M^{2k}, f) is given by $(H_k (M; \mathbb{Z})/\text{Tor}, \circ, f_\ast)$, where \circ is the intersection form. If (M, f) bounds a diffeomorphism (N, F) the isometric structure is hyperbolic, an invariant subkernel being given by the kernel of $i_\ast: H_k (M; \mathbb{Z})/\text{Tor} \rightarrow H_k (N; \mathbb{Z})/\text{Tor}$, so we have a homomorphism $I: \Delta_{2k} \rightarrow W_{(-1)k} (\mathbb{Z}, \mathbb{Z})$. Neumann has shown that this homomorphism is surjective [6].

Theorem 2. For $k > 1$ the homomorphism

$$
\Delta_{2k} \rightarrow W_{(-1)k} (\mathbb{Z}, \mathbb{Z}) \oplus \hat{\Omega}_{2k} \oplus \Omega_{2k+1},
$$

$$
[M, f] \mapsto (I(M, f), [M] - \tau(M) [P_k C], [M_f])
$$

is an isomorphism (k even), injective with cokernel $\mathbb{Z}_2 (k$ odd).

4. **Idea of the proof.** Consider a diffeomorphism (M^n, f) such that M and M_f are nullbordant. This implies that there exists a differentiable map $g: N^{n+2} \rightarrow S^1$ with $\partial N = M_f$ and $g|_{\partial N}$ the canonical projection from M_f to S^1. Let $x \in S^1$ be a regular value of g. $F^1 = g^{-1}(x)$ is a 1-codimensional submanifold of N with trivial normal bundle meeting ∂N transversally along ∂F: Cut N along F to obtain a differentiable manifold N_F with corners. The boundary of N_F consists of two copies F_0 and F_1 of F with opposite orientations and a manifold $V = \partial N_{\partial F}$ fibred over the unit interval I. $\partial V = \partial F_0 + \partial F_1$. The corners of N_F are at ∂F_0 and ∂F_1.

We now make the following strong assumption (compare [2, 2.3]): The components of F are simply connected and F_0 and F_1 are deformation retracts of N_F.

Then $(N_F; F_0, F_1)$ is a relative h-cobordism between $(F_0, \partial F_0)$ and $(F_1, \partial F_1)$. For $n > 5$ the h-cobordism theorem implies that the diffeomorphism on M can be extended to a diffeomorphism of F.

Our aim is, starting with an arbitrary N_F to obtain an N_F', which satisfies the above assumption. For this we modify N_F by addition and subtraction of handles. If n is odd ($n \neq 3$) we have shown in [4] that this works. If n is even
(n > 2) and \(I(M, f) = 0 \) we can do the same. The details of the proof will appear elsewhere.

REFERENCES

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, SONDERFORSCHUNGSBE-REICH THEORETISCHE MATHEMATIK, WEGELERSTR. 10, 53 BONN, GERMANY