Let M^n be a C^∞-compact, connected, n-manifold without boundary. Let $X^r(M)$ be the set of C^r-vector fields on M, $1 \leq r \leq \infty$. $X \in X^r(M)$ is C^r structurally stable if there exists a neighbourhood U_X of X in $X^r(M)$ such that given $Y \in U_X$ there exists a homeomorphism $h: M \to M$ taking oriented trajectories of X to oriented trajectories of Y. Let $\Sigma^r(M) \subset X^r(M)$ be the set of C^r-structurally stable vector fields on M. In this paper we announce the proof that $\Sigma^r(M)$ is always dense in $X^r(M)$ with respect to the C^0-topology. This result is the same theorem that Smale and Shub proved for diffeomorphisms in [2] and [1].

The main tools for our proof are the theorems of Smale [2], Shub [1] and Zeeman [3]. Details of the proof will appear elsewhere. The author wishes to thank his supervisor Professor E. C. Zeeman for many helpful conversations, suggestions and encouragement.

Main theorem.

Theorem 1. Let $1 \leq r \leq \infty$. Let $X \in X^r(M)$. Then X is C^r-isotopic to a $Y \in \Sigma^r(M)$ by an isotopy which is arbitrarily small in the C^0 topology.

Corollary 2. Let $1 \leq r \leq \infty$. Then $\Sigma^r(M)$ is dense in $X^r(M)$ with respect to the C^0 topology.

For the next theorem, suppose M admits a nonsingular vector field and let $NS^r(M)$ be the set of nonsingular C^r-vector fields on M.

Theorem 3. Any $X \in NS^r(M)$ is C^r-isotopic (through nonsingular vector fields) to a $Y \in \Sigma^r(M) \cap NS^r(M)$ by an isotopy which is arbitrarily small in the C^0-topology.

REFERENCES

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, ENGLAND

1 This paper summarizes a portion of the author's Ph. D. thesis at Warwick University.
2 Work supported by a scholarship from CAPES (Brazil).

Copyright © 1976, American Mathematical Society