1. Introduction. For definitions and notation in what follows, see [4] and [5]. If A is an infinite set and $\varphi(y_1, \ldots, y_n, R, Y_1, \ldots, Y_m) = \varphi(\vec{y}, R, \vec{Y})$ is a second order relation on A, we call φ operative if R is n-ary. For such a φ let

$$I^t_\varphi = \bigcup_{\eta < t} I^t_\varphi \left\{ \varphi(\vec{y}, \vec{Y}) : \varphi(y, \vec{Y} : (\vec{y}, \vec{Y}) \in \bigcup_{\eta < t} I^t_\varphi, \vec{Y} \right\}$$

and $I_\varphi = \bigcup I^t_\varphi$.

If F is a collection of second order relations (for simplicity collection of operators) on A, then F-IND2 is the class of all second order relations of the form $\psi(\vec{x}, \vec{Y}) \equiv I_\varphi(\vec{a}, \vec{x}, \vec{Y})$, for some operative $\varphi(\vec{u}, \vec{x}, R, \vec{Y})$ in F and constants \vec{a} from A. As in [5] F-IND is the class of all relations on A which are in F-IND2. We let F_{mon} be the collection of all operative $\varphi(\vec{y}, R, \vec{Y})$ in F which are monotone on R and we put $\neg F = \{ \neg \varphi : \varphi \in F \}$. A collection of operators F on A is adequate if it contains all the $\Pi^0_1(C)$ second order relations, where C is a coding scheme on A and is closed under \land, \lor, $\exists A$ and trivial combinatorial substitutions. Let $WF(S) \leftrightarrow S$ be a well-founded relation on $A \leftrightarrow \exists 1 \forall(a_0, a_1, \ldots, a_i) \in S$.

Theorem 1. Let F be an adequate collection of operators on an infinite set A. If $WF(\neg F \land \exists F \subseteq F_{\text{mon}}$-IND2, then F-IND$^2 = F_{\text{mon}}$-IND2.

2. Elementary induction. Let EL be the collection of all the elementary second order relations on a structure $A = (A, R_1, \ldots, R_r)$ and let EL^+ be the subcollection of EL_{mon} consisting of all operative $\varphi(\vec{x}, R, \vec{Y})$ which are definable by positive in R elementary formulas. One usually writes EL^+-IND2 = IND2 and EL^+-IND = IND. Clearly IND$^2 \subseteq EL_{\text{mon}}$-IND$^2 \subseteq EL$-IND2 and it is well known that IND2 is a tiny part of EL-IND2 for (say) almost acceptable A's. By a basic result of Kleene and Spector for ω and Barwise-Gandy-Moschovakis in general (see [4, §8A]), on every countable almost acceptable structure, IND$^2 = EL_{\text{mon}}$-IND$^2 = \Pi^1_1$. On the other hand, letting $WF^n(S) \leftrightarrow S$ is a 2n-ary relation on A which is well founded (viewed as binary on A^n), we have

Corollary 1. Let A be an infinite structure such that each WF^n is elementary. Then EL_{mon}-IND$^2 = EL$-IND2.

AMS (MOS) subject classifications (1970). Primary 02F27.
A more detailed level-by-level version of Corollary 1 is the following, where we just write Σ^0_m, Π^0_m instead of $\Sigma^0_m(C)$, $\Pi^0_m(C)$, where C is a hyperelementary coding scheme on A.

Corollary 2. Let A be an almost acceptable structure. If $m \geq 2$ and $WF \in \Pi^0_m$, then for all $n \geq m$, Σ^0_n-IND$^2 = (\Sigma^0_n)^{\text{mon}}$-IND2.

So, for example, in the structure of analysis \mathbb{R} this says that Σ^1_n monotone operators on \mathbb{R} inductively define the same relations as arbitrary Σ^1_n operators, when $n \geq 2$. Similarly for Σ^1_1. The following rather curious result can be also established by the methods used to prove Theorem 1. If $A = \langle A, R_1 \cdots R_i \rangle$ is a structure, by an elementary quantifier Q on A we understand a quantifier on A which viewed as a second-order relation is elementary.

Theorem 2. Let A be an acceptable structure in which WF is elementary. There is an elementary quantifier Q on A such that for every inductive relation R on A, there is an inductive relation R^* on A such that $\forall R(x) \leftrightarrow QyR^*(x, y)$.

This should be compared with a result of Moschovakis [3] in higher type recursion, where “inductive” is replaced by “semirecursive in a total object of type ≥ 3” and Q becomes the existential quantifier (on an appropriate space).

Remarks. (i) We conjecture that in Theorem 1 (and correspondingly in Corollary 1) the hypothesis $WF \in \forall \forall F$ can be weakened to $WF \in \forall (F^{\text{mon}}$-IND$^2)$. (ii) In a direction opposite to that of Corollary 1 one has the following theorem of Nyberg (unpublished): Let A be almost acceptable. If $\text{IND} \subseteq (\text{EL}^{\text{mon}}$-IND), then EL^{mon}-IND = IND. Thus for most structures occurring in practice, EL^{mon}-IND is either IND or EL-IND.

3. Further corollaries and applications to Spector classes. An immediate consequence of Theorem 1 is also the following result of Harrington and Moschovakis [2]. (Given a structure A and a quantifier Q on A we abbreviate by Q-IND the class of second order relations which are positive $L^A(Q)$-inductive (see [4, p. 49]).

Corollary 3. (Harrington-Moschovakis [2]). Let A be an almost acceptable structure and let Q be a quantifier on A. If $F = \forall (Q$-IND$^2)$, then F-IND$^2 = F^{\text{mon}}$-IND2.

This generalizes a result of Grilliot to the effect that over ω, Σ^1_1-IND$^2 = (\Sigma^1_1)^{\text{mon}}$-IND2. The original proof of Corollary 2 in [2] yields the stronger statement that for $F = \forall (Q$-IND$^2)$, F-IND$^2 = F^{\text{pos}}$-IND2 and also shows that F-IND$^2 = Q^+$-IND2, where Q^+ is the next quantifier of Q (see [1]). Turning now to Spector classes we can obtain the following, where the notions involved are explained in [5].

Theorem 3. Let Γ be a Spector class on A, and let F be a reasonable,
nonmonotone class of operators on A closed under \exists^A. If $WF \subseteq \Gamma$, then Γ is F-compact iff Γ is F^mon_*-compact, where $F^\text{mon}_* = \{\varphi(R) : \varphi \in F, \varphi \text{ monotone}\}$. In particular if F is typical, nonmonotone, F^mon_*-IND is a Spector class iff F^mon_*-IND = F-IND.

Further applications of the methods developed here to the theory of "second order" Spector classes as well as details and proofs of the results announced here will appear elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY, CALIFORNIA 94720

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125