THE RATIONAL HOMOTOPY OF FIXED POINT SETS
OF TORUS ACTIONS

BY CHRISTOPHER ALLDAY

Communicated by E. H. Brown, Jr., July 20, 1976

1. Introduction. Let \(X \) be a connected topological space, whose Sullivan-de Rham minimal model, \(M(X) \), is finitely generated. Following Halperin [8], we shall denote the indecomposable quotient of \(M(X) \) by \(\Pi^\psi(X) \), and call it the pseudo-dual rational homotopy of \(X \). If \(X \) is simply-connected, then \(\Pi^\psi(X) \) is naturally isomorphic to \((\pi_n(X) \otimes \mathbb{Q})^*\), for all \(n \geq 1 \). (See [4] and [8] for detailed treatment of \(\Pi^\psi(X) \).)

DEFINITION 1.1. If \(\dim \Pi^\psi(X) < \infty \), then we shall say that \(X \) has finite dimensional rational homotopy (FDRH), and we shall define the Euler-Poincaré homotopy characteristic of \(X \) to be \(\chi(X) = \sum_{n=1}^{\infty} (-1)^n \dim \Pi^\psi_n(X) \).

In this note we announce some results, which relate \(\Pi^\psi(X) \) to \(\Pi^\psi(F) \), where \(F \) is a component of the fixed point set of a torus group action on \(X \). Further results and detailed proofs will appear in [2] and [3].

2. Results. Although more general conditions would suffice, we shall assume, for simplicity, throughout this section, that \(X \) is a compact topological manifold, that a torus \(T \) is acting on \(X \) locally smoothly (that is, with linear slices), and that the fixed point set, \(X^T \), is nonempty. Our first theorem is the following.

THEOREM 2.1. If \(X \) has FDRH, and if \(F \) is a component of \(X^T \), then \(F \) has FDRH, and \(\chi(F) = \chi(X) \). Furthermore,

\[
\sum_{n=1}^{\infty} \dim_q \Pi^\psi_n(F) \leq \sum_{n=1}^{\infty} \dim_q \Pi^\psi_n(X);
\]

and

\[
\sum_{n=0}^{\infty} \dim_q \Pi^\psi_{n+1}(F) \leq \sum_{n=0}^{\infty} \dim_q \Pi^\psi_{n+1}(X).
\]

We also have the following generalization of Bredon’s inequalities [5].

THEOREM 2.2. If \(X \) has FDRH, then, for all \(n \geq 1 \),

\[
\dim_q \Pi^\psi_n(F) \leq \sum_{k=0}^{\infty} \dim_q \Pi^\psi_{n+2k}(X).
\]
Our third theorem is a generalized Golber formula ([1], [6], [7] and [9]). We shall assume now that X has FDRH, and that $\Pi^2_n(X) = 0$, for all $n \geq 1$. It follows that X^K is connected, for any subtorus $K \subseteq T$. From Theorem 2.1 it follows also that $\Pi^2_n(X^K) = 0$, for all $n \geq 1$, and that X^K has FDRH. With this in mind we make the following definition.

Definition 2.3. Suppose that $\Pi^*_n(X^K)$ has a basis (as a rational vector space) of elements with degrees $\alpha_i(K)$, $1 \leq i \leq s$.

Set

$$e(K) = \prod_{1 \leq i < j \leq s} (\alpha_i(K) + 1)(\alpha_j(K) + 1).$$

If $K = \{e\}$, so that $X^K = X$, then set $e(K) = e(X)$.

The generalized Golber formula is as follows.

Theorem 2.4.

$$e(X) - e(T) - \sum_H [e(H) - e(T)] = \sum_K \left[e(K) - e(T) - \sum_{H \supset K} \{e(H) - e(T)\} \right],$$

where Σ_H runs over all subtori of T of corank one, Σ_K runs over all subtori of T of corank two, and $\Sigma_{H \supset K}$ runs over all subtori of T of corank one, which contain K.

In [3], we obtain further formulae of this kind, and give a general solution to Problem 9 of [9, p. 148].

3. **Method of proof.** The following theorem is the main technical device which we use.

Theorem 3.1. If S is a commutative overring of the rational numbers, and if A_S is the category of differential $(\mathbb{Z}/2\mathbb{Z})$-graded algebras over S (with S having degree 0), then A_S is a closed model category.

The proof of this theorem is a straightforward analogue of the proof of Theorem 4.3 of [4].

Theorem 3.1 allows us to reproduce a localization-cum-ideal theory for Π^*_n, analogous to that for equivariant cohomology produced by Chang and Skjelbred [6].

REFERENCES

2. ———, *On the rational homotopy of fixed point sets of torus actions* (to appear).

