Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Duality and Kato's theorem on small perturbations


Author: Le Quang Chu
Journal: Bull. Amer. Math. Soc. 82 (1976), 896-898
MSC (1970): Primary 47A55, 47B30
DOI: https://doi.org/10.1090/S0002-9904-1976-14200-0
MathSciNet review: 0435898
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. De Wilde and Le Quang Chu, Perturbation of maps in locally convex spaces, Math. Ann. 215 (1975), 215-233. MR 473887
  • 2. I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspehi Mat. Nauk 12 (1957), no. 2 (74), 43—118; English transl., Amer. Math. Soc. Transl. (2) 13 (1960), 185-264. MR 20 #3459; 22 #3984.
  • 3. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. MR 21 #6541. MR 107819
  • 4. Le Quang Chu, Bounded perturbations of Φ, Bull. Soc. Roy. Sci. Liège 1-2 (1975), 28-35; addendum, ibid. 9-10 (1975), 537—539; corrigendum, ibid, (to appear).
  • 5. Le Quang Chu, A short proof of Vladimirskiĭ's theorem on precompact perturbations, Canad. Math. Bull. 18 (1975), 649-655. MR 415367
  • 6. A. P. Robertson and W. Robertson, Topological vector spaces, 2nd ed., Cambridge Univ. Press, New York, 1973. MR 50 #2854. MR 350361
  • 7. Ju. N. Vladimirskiĭ, On bounded perturbations of Φ, Dokl. Akad. Nauk SSSR 196 (1971), 263-265 = Soviet Math. Dokl. 12 (1971), 80-83. MR 42 #8335. MR 273457
  • 8. Ju. N. Vladimirskiĭ, Compact perturbations of Φ-operators in locally convex spaces, Sibirsk. Mat. Ž. 14 (1973), 738-759 = Siberian Math. J. 14 (1973), 511-524. MR 634980

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 47A55, 47B30

Retrieve articles in all journals with MSC (1970): 47A55, 47B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1976-14200-0

American Mathematical Society