Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Existence theorems across a point of resonance


Author: Lamberto Cesari
Journal: Bull. Amer. Math. Soc. 82 (1976), 903-906
MSC (1970): Primary 47H15, 34B15, 34C15, 35G30, 35J40
DOI: https://doi.org/10.1090/S0002-9904-1976-14205-X
MathSciNet review: 0425693
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. Cesari, Functional analysis and periodic solutions of nonlinear differential equations, Contributions to Differential Equations 1 (1963), 149-187. MR 27 #1662. MR 151678
  • 2. L. Cesari, Alternative methods in nonlinear analysis, Proc. Internat. Conf. Differential Equations (Univ. of Southern California, Los Angeles, 1974), Academic Press, New York, 1975, pp. 95-148. MR 430884
  • 3. L. Cesari, An abstract existence theorem across a point of resonance, Proc. Internat. Sympos. Dynamical Systems (Univ. of Florida, Gainesville, March 1976), Academic Press, New York (to appear). MR 467420
  • 4. L. Cesari, Nonlinear oscillations across a point of resonance for nonselfadjoint systems, J. Differential Equations (to appear). MR 477909
  • 5. Lamberto Cesari, Nonlinear problems across a point of resonance for nonselfadjoint systems, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, pp. 43–67. MR 499091
  • 6. L. Cesari and R. Kannan, An abstract existence theorem at resonance, Proc. Amer. Math. Soc. (to appear). MR 448180
  • 7. D. G. de Figueiredo, The Dirichlet problem for nonlinear elliptic equations, a Hilbert space approach, Lectures Notes in Math., vol. 446, Springer-Verlag, Berlin and New York, 1975, pp. 1s44-165. MR 437924
  • 8. R. Kannan and P. J. McKenna, An existence theorem by alternative methods for semilinear abstract equations, Boll. Un. Mat. Ital. (to appear).
  • 9. E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/70), 609-623. MR 42 #2171. MR 267269
  • 10. A. C. Lazer and D. E. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. (4) 82 (1969), 49-68. MR 40 #2972. MR 249731
  • 11. J. Nečas, The range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 14 (1973), 63-72. MR 47 #7541. MR 318995
  • 12. H. C. Shaw, Nonlinear elliptic boundary value problems at resonance, J. Differential Equations (to appear).
  • 13. S. A. Williams, A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J Differential Equations 8 (1970), 580-586. MR 42 #2169. MR 267267

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 47H15, 34B15, 34C15, 35G30, 35J40

Retrieve articles in all journals with MSC (1970): 47H15, 34B15, 34C15, 35G30, 35J40


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1976-14205-X

American Mathematical Society