PRIME PI-RINGS

BY S. A. AMITSUR AND LANCE W. SMALL

Communicated by Barbara L. Osofsky, September 30, 1976

In this note we introduce and sketch a new method for studying the behavior of prime ideals in prime rings satisfying a polynomial identity. If \(R \) is a prime PI-ring of \(\operatorname{pid}(R) = n \) then \(R \) has a ring of quotients, \(Q(R) \), which is a central simple algebra of dimension \(n^2 \) over its center. Each element of \(R \), thus, has a (reduced) characteristic polynomial when considered as an element of \(Q(R) \). \(T_R \) (or, simply, \(T \) if there is no ambiguity) will denote the ring generated by the coefficients of the characteristic polynomials of the elements of \(R \). Our principal interest is the ring \(T_R \) generated by \(R \) and \(T \). \(T_R \) is a central extension of \(R \) with the same quotient ring and, in general, more closely linked to its center than \(R \) is to its center as shown in

Theorem 1.

(a) \(T_R \) is integral over \(T \).

(b) If \(R = A[x_1, \ldots, x_n] \) where \(A \) is a commutative Noetherian ring, then \(T_R \) is a finite \(T \)-module and \(T = A[t_1, \ldots, t_0] \).

Theorem 1 follows from a theorem of Shirshov [4] and a result of independent interest:

Theorem 2. Let \(\Omega \) be a commutative ring and \(R \) an \(\Omega \)-algebra. Assume every prime homomorphic image of \(R \) satisfies a polynomial identity. If every element of \(R \) is a sum of elements integral over \(\Omega \), then \(R \) itself is integral over \(\Omega \).

Research of both authors supported by the National Science Foundation.
Our principal result and the means of passing from R to TR is

Theorem 3. Let R be a prime ring such that $\text{pid}(R) = n$. Then there exists an ideal V of R such that $TV \subseteq V$ and if P is a prime containing V then $\text{pid}(R/P) < n$.

Theorem 3 extends and simplifies results of Razmyslov [3] who considered the case when R is an algebra over a field of characteristic 0, and a somewhat different T when the characteristic of R is not 0.

The relationship between many of the primes of R and many of those of TR follows from the following general proposition.

Proposition 4. Suppose $R \subseteq S$ are rings and there is an ideal V of S which is contained in R. Then if P is a prime ideal of S, $P \not\subseteq V$, $P \cap R$ is a prime ideal of R and every prime ideal of R not containing V is obtained this way. Furthermore, if $P_1 \supseteq P_2$ and $P_1 \not\subseteq V$ are primes in S then

$$P_1 \cap R \supseteq P_2 \cap R.$$

We remark that for a prime PI-ring R given any prime $P \subseteq R$ there exists a nonzero prime Q in TR such that $Q \cap R \subseteq P$ and $Q \cap R$ is prime.

Decisive results can be obtained in the important case of generic matrices [2, p. 61]. Let $R_{(v,n)}$ be the ring of $v \times n$ generic matrices and $R_{(u,n)} = TR_{(v,n)}$. We have

Theorem 5. (a) If P is a prime in $R_{(v,n)}$, then there is a prime $P \subseteq R_{(v,n)}$ such that $P \cap R_{(v,n)} = P$.

(b) If U is a prime ideal of $R_{(v,n)}$ then $\text{rank}(U) = \text{rank}(U \cap R_{(v,n)})$.

Examples show that this result does not hold for arbitrary finitely generated rings. Furthermore, “going-up” does not hold for the prime ideals of the rings $R_{(v,n)}$ and $R_{(u,n)}$.

As an application of Theorem 5 we do have the principal ideal theorem:

Theorem 6. Let $R_{(m,n)} = k[X_1, \ldots, X_m]$ be the ring of m generic $n \times n$ matrices. If z is a central nonunit of $R_{(m,n)}$, then any prime minimal over z is rank 1.

For Noetherian prime PI-rings Theorem 1 can be improved. Indeed, we obtain

Theorem 7. Let R be a prime PI-ring which satisfies the ascending chain on centrally-generated ideals. Then TR can be generated as an R-module by finitely many central elements and also satisfies ACC on centrally-generated ideals. Thus, if R is Noetherian TR is also Noetherian.
As an application of Theorem 7 we consider Noetherian G-rings. A prime Pi-ring is a G-ring if its quotient ring can be obtained by inverting a single central element. Generalizing the commutative case [1, p. 107] is

Theorem 8. If R is a Noetherian G-ring, then R has only finitely prime ideals each of which is maximal.

Complete proofs and additional applications will appear elsewhere.

W. Schelter informs us that he has obtained some of these results independently.

REFERENCES