In this paper G is a compact abelian group with ordered dual Γ. By this we mean there is a nontrivial group homomorphism $\phi: \Gamma \rightarrow \mathbb{R}$ where \mathbb{R} is the additive group of real numbers. Let $M(G)$ be the usual convolution algebra of finite Borel measures on G and $^\wedge$ the Fourier-Stieltjes transformation.

A measure $\mu \in M(G)$ is said to vanish at infinity in the direction of ϕ if $\{\gamma_n\}_\infty^\infty \subset \Gamma$ with $\phi(\gamma_n) \rightarrow \infty \Rightarrow \hat{\mu}(\gamma_n) \rightarrow 0$. The subspace consisting of all measures whose transforms vanish at infinity in the direction of ϕ will be denoted by $M_0(G)$.

Let δ_0 be the identity measure in $M(G)$ and for any integer N_i put $\delta_i = N_i \delta_0$. The purpose of this note is to announce the following results which explicate a line of research begun by H. Helson [2] and continued by various authors in [1], [3], [5], [6], and [7].

Theorem 1. Let $\mu \in M(G)$ such that the convolution product $\prod_{i=1}^m (\mu - \delta_i) \in M_0(G)$. Then μ has a decomposition $\mu = \mu_0 + \mu_\perp$ where $\mu_0 \in M_0(G)$, $\mu_\perp \in M_\perp(G)$ and $\hat{\mu}_\perp(\Gamma) \subset \{N_1, \ldots, N_m\}$. If $\prod_{i=1}^m (\mu - \delta_i) \in M_0(G)$ then μ has a decomposition $\mu = \mu_0 + \mu_\perp$ where $\mu_0 \in M_0(G)$, $\mu_\perp \in M_\perp(G)$ and $\hat{\mu}_\perp(\Gamma) \subset \{N_1, \ldots, N_m\}$. Here $M_0(G)$ is the ideal of measures $\mu \in M(G)$ such that $\hat{\mu} \in C_0(\Gamma)$.

The proof of Theorem 1 is obtained by analyzing μ_\perp in $M(S)$ where S is the structure semigroup of $M(G)$.

Assume ϕ is an isomorphism, P the positive cone and E a Sidon subset of Γ. For any subset A of Γ put $F(A) = \{\mu \in M(G): \hat{\mu}$ is integer-valued on $A \}$ and $I(A) = \{\mu \in M(G): \hat{\mu} = 0$ or 1 on $A \}$. The following theorem is a consequence of Theorem 1 and is an extension of a result announced by I. Kessler [3]; see also [4, pp. 206–211].

Theorem 2. If $\mu \in F(\Gamma \setminus P \cup E)$ then there is a $\nu \in F(\Gamma)$ such that $\hat{\mu} = \hat{\nu}$ off $- P \cup E$. In particular, if $\mu \in I(\Gamma \setminus P \cup E)$ then $\nu \in I(\Gamma)$.

Measures such that $\hat{\mu}(\gamma) = \hat{\nu}^2(\gamma)$ for all $\gamma \in P$ are called semi-idempotents. A subset R of Γ is said to be a weak Rajchman set if supp $\hat{\mu} \subset R \Rightarrow \hat{\mu} \in C_0(\Gamma)$. An easy consequence of Theorem 1 is the following result.
THEOREM 3. If $\mu \in F(\Gamma \setminus \mathbb{R})$ then there is a $\nu \in F(\Gamma)$ such that $\hat{\mu} = \hat{\nu}$ off \mathbb{R}. In particular, if $\mu \in I(\Gamma \setminus \mathbb{R})$ then $\nu \in I(\Gamma)$.

For examples of Rajchman sets, the reader is referred to [5]. Proofs of our results will appear elsewhere.

REFERENCES

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506