Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Nonuniqueness of best approximating complex rational functions


Authors: E. B. Saff and R. S. Varga
Journal: Bull. Amer. Math. Soc. 83 (1977), 375-377
MSC (1970): Primary 41A20; Secondary 41A50
DOI: https://doi.org/10.1090/S0002-9904-1977-14276-6
MathSciNet review: 0433108
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Günter Meinardus, Approximation of functions: Theory and numerical methods, Expanded translation of the German edition. Translated by Larry L. Schumaker. Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. MR 0217482
  • 2. E. B. Saff and R. S. Varga, Nonuniqueness of best complex rational approximations to real functions on real intervals, J. Approx. Theory 23 (1978), no. 1, 78–85. MR 499031, https://doi.org/10.1016/0021-9045(78)90081-3
  • 3. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
    J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR 0218588

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 41A20, 41A50

Retrieve articles in all journals with MSC (1970): 41A20, 41A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1977-14276-6