TOWARDS ALGEBRAIC COBORDISM

BY VICTOR SNAITH

Communicated by E. H. Brown, Jr., September 9, 1976

Abstract. A new description of cobordism is given and, by analogy, cobordism theories are defined for an arbitrary ring.

1. Let A be a ring with a unit. A cohomology theory, MA, might reasonably be called "the algebraic cobordism of $A"$ if

(i) geometry over A gave rise to elements in $\pi_*(MA)$, and

(ii) the existence of Chern classes for A induced a transformation of cohomology theories from MA to the algebraic K-theory of A.

Below I sketch the construction of theories which often satisfy (i) and (ii). Details will appear in [2], [3].

Let X be a homotopy associative and commutative Ω-space. Let $T \subset H\pi^*(X)$ be a finite subset of homogeneous elements. To this data is associated a periodic, commutative ring spectrum $X(T)$. $X(T)^*$ is the associated cohomology theory. For example, when $X = BU$ and T consists of the generator $B \in \pi_2(BU)$, then $X(T)_{2k} = \Sigma^2 BU$ and $\epsilon_{2k} : \Sigma^2 X(T)_{2k} \to X(T)_{2k+2}$ is equal to

$$
\Sigma^2(\Sigma^2 BU) \xrightarrow{h} \Sigma^2(S^2 \times BU) \xrightarrow{\Sigma^2(B \oplus \text{id})} \Sigma^2(BU).
$$

Here h is a Hopf construction and "id" is the identity map of BU.

When $X = BGLA^+$ for a ring A and $T \subset H\pi^*(BGLA^+)$, $X(T)^*$ is called the algebraic cobordism of A associated with T. The terminology is motivated by (a)—(c) of the following result:

Theorem 1.1. Suppose $\dim Y < \infty$; then:

(a) $BU(T)^0(Y) \simeq MU^2(Y)$ if $T = \langle \text{generator of } \pi_2(BU) \rangle$;

(b) $BSp(T)^0(Y) \simeq MSp^4(Y)$ if $T = \langle \text{generator of } \pi_4(BSp) \rangle$;

(c) $BO(T)^0(Y) \simeq MO^*(Y)$ if $T = \langle \text{generator of } \pi_1(BO) \rangle$;

(d) if F is a finite field and T is a subset of $K_*(F)$ then $BGLF^+(T)^0(Y) \simeq 0$;

(e) if $T = \langle \text{generator of } K_1(Z) \rangle$ then $BGLZ^+(T)^0(Y)$ in general is a non-trivial group in which each element is of order 2.

Key words and phrases. Cobordism, algebraic cobordism, K-theory, algebraic K-theory, S-equivalence.

Copyright © 1977, American Mathematical Society
Theorem 1.1 relates K-theory and cobordism very satisfactorily. For example, Adams operations in KU^* induce Adams operations in MU^* while Adams idempotents in KU^* induce Adams idempotents in MU^*.

The starting point for Theorem 1.1 is the following:

Theorem 1.2. If $1 \leq n \leq \infty$ there exist stable equivalences

(i) $BU(n) = \bigvee_{1 = k}^n MU(k)$,

(ii) $BSp(n) = \bigvee_{1 = k}^n MSp(k)$,

(iii) $BO(2n) = \bigvee_{1 = k}^n BO(2k)/BO(2k - 2)$ and

(iv) $BSO(2n + 1) = \bigvee_{1 = k}^n BSO(2k + 1)/BSO(2k - 1)$ when localised away from 2.

2.1. **Sketch of Proof of Theorem 1.2.** The Becker-Gottlieb transfer is used to embed each classifying space, as a filtered space, into $QW = \lim\Omega^n \Sigma^n W$ for suitable W. For example BU is embedded in $QBU(1)$. The decompositions then follow from the decomposition theorem of [1].

2.2. **Sketch of Theorem 1.1.** Consider the unitary example. Then

$$BU(T)^0(Y) = \lim_{N} \{\Sigma^{2N} Y, BU\}$$

where $\{ , \}$ means homotopy classes of S-maps. Hence, by Theorem 1.2, if $\dim Y \leq 4t$

$$(2.3) \quad BU(T)^0(Y) \simeq \lim_{M} \bigoplus_{t + M < k} \{\Sigma^{M} Y, MU(k)\} \oplus \prod_{t-M \leq l} MU^{2l}(Y).$$

A careful study of the S-equivalences of Theorem 1.2 and some obstruction theory shows that only the cobordism part of (2.3) remains in the limit.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA