A CHARACTERIZATION OF HARMONIC IMMERSIONS
OF SURFACES

BY TILLA KLOTZ MILNOR

Communicated by J. A. Wolf, January 3, 1977

Let S be an oriented surface with Riemannian metric ds^2, and M^n a Rie-
mannian manifold of dimension $n \geq 2$. We present here a characterization of
harmonic immersions $f: S \to M^n$ which sheds some light on their differential
geometric properties. While C^∞ smoothness is assumed throughout, less is
needed.

To work on the Riemann surface determined by ds^2 on S, use conformal
parameters $z = x_1 + ix_2$ which correspond to ds^2-isothermal coordinates x_1, x_2
on S. Given any local coordinates on M^n, write $f = (f^\alpha)$ and $f_i^\alpha = \partial f^\alpha / \partial x_i$
where $i = 1, 2$ and $\alpha, \beta, \gamma = 1, 2, \ldots, n$. An immersion $f: S \to M^n$ is har-
monic if and only if for each α and for any ds^2-isothermal coordinates x_1, x_2
on S
$$\partial^2 f^\alpha / \partial x_i^2 + \Gamma^\alpha_{\beta\gamma} f_i^\beta f_i^\gamma = 0,$$
where $\Gamma^\alpha_{\beta\gamma}$ are the Christoffel symbols for the metric on M^n, and one sums on
the indices β, γ and i.

To any real quadratic form $X = l_{ij} dx_i dx_j$ on S, associate on R the qua-
dratic differential $\Omega(X, R)$ and the conformal metric $\Gamma(X, R)$ given by $4\Omega(X, R)$
$= (l_{11} - l_{22} - 2il_{12})dz^2$ and $2\Gamma(X, R) = (l_{11} + l_{22})|dz|^2$ respectively. Thus
$X = 2 \text{Re } \Omega + \Gamma$ on R. (See [10].) Call $\Omega(X, R)$ holomorphic if and only if
the coefficient of dz^2 is complex analytic in z for every conformal parameter z
on R. An immersion $f: S \to M^n$ yields many quadratic forms of interest,
among them the induced metric I, and the second fundamental forms $II(N)$ de-
termined by choices of a unit normal vector field N.

DEFINITION. An immersion $f: S \to M^n$ is R-minimal if and only if
$\Omega(I, R)$ is holomorphic, and $\Gamma(II(N), R) \equiv 0$ for any choice (local or global) of
a unit normal vector field N.

An R-minimal immersion is minimal if and only if R is the Riemann sur-
face R_1 determined on S by I. It is known that a conformal immersion $f: S \to
M^n$ is harmonic if and only if it is minimal. Indeed, this is established in [2]
independent of the dimensions of S and M^n. By analogy, we have the following

403
THEOREM. An immersion \(f: S \to M^n \) is harmonic if and only if it is \(R \)-minimal.

This result is known for maps \(f: S \to M^2 \). (See [4] for references.) It is also known that \(\Omega(I, R) \) must be holomorphic for any harmonic map \(f: S \to M^n \), so that the only harmonic maps of the 2-sphere must be minimal ([2] and [8]).

We consider immersions here to provide (when \(n \geq 3 \)) a well-defined \((n - 2)\)-dimensional normal space everywhere.

Note that \(\Gamma(\Pi(N), R) \equiv 0 \) for all \(N \) means that the trace of \(\Pi(N) \) with respect to \(ds^2 \) vanishes for all \(N \). When \(ds^2 \neq I \), this condition alone forces a minimal immersion, for it says that the mean curvature vector [11, p. 13] vanishes. Indeed, by our Theorem, the "mean curvature vector" formed with \(ds^2 \) in place of \(I \) vanishes for any harmonic immersion \(f: S \to M^n \). The converse can fail when \(R \neq R_1 \). For example, if \(S \) is immersed in \(E^3 \) with Gauss curvature \(K \equiv -1 \), the usual asymptotic Tchebychev coordinates [9, p. 528] are \(\Pi' \)-isothermal, where \(\sqrt{H^2 + 1} \Pi' = H \Pi + I \), with \(H \) mean curvature. Here \(\Gamma(II, R_{II}) \equiv 0 \) but \(\Omega(I, R_{II}) \) is not holomorphic. Similarly, \(\Omega(I, R) \) holomorphic does not imply \(\Gamma(II(N), R) \equiv 0 \) for any \(N \). This is obvious when \(R = R_1 \). Less trivially, if \(S \) is immersed in \(E^3 \) with \(K \equiv 1 \), then \(\Omega(I, R_{II}) \neq 0 \) is holomorphic, but \(\Gamma(II, R_{II}) \equiv II \) does not vanish [5].

The proof of the theorem is elementary, using the Gauss equations [5, p. 160]. Some results which follow from the theorem are stated below for the special case \(n = 3 \). Full details and proofs will appear elsewhere. Hereafter, \(f: S \to M^3 \) is an immersion with fundamental forms \(I \) and \(II \), mean curvature \(H \), Gauss curvature \(K \) and intrinsic curvature \(K(I) \). Denote by \(K \) the sectional curvature of \(M^3 \) for planes tangent to \(S \), by \(\Lambda = gI + hII \) any positive definite linear combination with real valued coefficients \(g \) and \(h \), by \(R \) the Riemann surface determined on \(S \) by \(ds^2 \) and by \(R \) an arbitrary Riemann surface on \(S \). The form \(II' \) given by \(\sqrt{H^2 - K} II' = HII - Ki \) is positive definite wherever \(K < 0 \) [10].

Lemmas 1 and 2 reflect the separate effects of the conditions \(\Omega(I, R) \) holomorphic and \(\Gamma(II, R) \equiv 0 \). Theorem 2 includes a correction of the Corollary to Theorem 2 in [7].

Lemma 1. If \(\Omega = \Omega(I, R) \neq 0 \) is holomorphic, then except at isolated points where \(\Omega = 0 \), there exists a canonically determined function \(F > 0 \) on \(S \) which is \(R \)-superharmonic where \(K(I) \geq 0 \) and \(R \)-subharmonic where \(K(I) \leq 0 \) [1, p. 135].

Lemma 2. If \(\Gamma(II, R) \equiv 0 \) for any one \(R \) on \(S \), then \(K \leq 0 \) (so that \(K(I) \leq K \)), and \(H = 0 \) wherever \(K = 0 \).

Theorem 1. If \(f: S \to M^3 \) is harmonic with \(ds^2 = \Lambda \), then either \(\Lambda \propto I \), or else (except at isolated points where \(\Lambda \propto I \)) \(\Lambda \propto II' \).
THEOREM 2. If \(f: S \rightarrow M^3 \) is harmonic with \(ds^2 = II' \), \(H \) never zero and \(0 \neq K(I) \leq 0 \), then \(H'/H \) is not bounded.

THEOREM 3. If \(f: S \rightarrow M^3 \) is harmonic with \(ds^2 = II' \) complete, \(|K/H| \) bounded and \(K(II') \leq 0 \) then \(K(II') \equiv 0 \).

THEOREM 4. If \(f: S \rightarrow M^3 \) is harmonic with \(R \) parabolic [1, p. 209], \(I \) nowhere proportional to \(ds^2 \) and \(K(I) \geq 0 \), then \(K(I) \equiv 0 \).

REFERENCES

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903