Inverse Scattering for the Klein-Gordon Equation

By G. Perla Menzala

Communicated by Richard K. Miller, January 26, 1977

In this note we would like to announce recent results concerning the so-called Inverse Scattering problem for the Klein-Gordon equation in three dimensions. Complete proofs of this work will appear in [1].

We consider the Klein-Gordon equation with a linear perturbation, that is

\[u_{tt} - \Delta u + m^2 u + q(x)u = 0 \]

in \(\Omega = \mathbb{R}^3, -\infty < t < +\infty \). Here the subscripts denote partial derivatives, \(m > 0 \) and \(\Delta \) is the Laplacian operator. The potential \(q(x) \) is assumed to be a real valued function in \(\mathbb{R}^3 \), nonnegative and satisfying certain reasonable conditions at infinity which we will specify later. The initial Cauchy data for (1) at \(t = 0 \) will be assumed to be \(C^\infty \) with compact support. In the space of such solutions of (1) we define the (total) energy of \(u \) as

\[\|u\|_E^2 = \frac{1}{2} \int_{\mathbb{R}^3} [|\text{grad } u|^2 + u_t^2 + m^2 u^2 + q(x)u^2] \, dx \]

where \(|\text{grad } u|^2 = \sum_{j=1}^3 u_x^2_j \). It is easy to show that \(\|u\|_E \) is constant i.e. we are dealing with a conservative equation. If we assume (for example) that \(q(x) \in L^1 \cap L^\infty(\mathbb{R}^3) \) then it is well known (see for example [3] and [4]) that given a solution \(u \) of (1) there then exists a unique pair \(u_\pm \) of solutions of (1) with \(q = 0 \) such that

\[\|u - u_\pm\|_E \to 0 \quad \text{as } t \to \pm \infty. \]

The operator which relates \(u_- \to u_+ \) is called the scattering operator and is denoted by \(S \). One want to know what can be said about \(q(x) \) if we know the operator \(S \)? This is a problem of physical relevance (see [5], [6]). If \(q(x) \) is spherically symmetric, then there has been considerable research on this problem in the past twenty five years, mainly through the Gelfand-Levitan-Marchenko approach. In dimensions higher than one, very little is known. Here, we announce a “local” uniqueness result concerning the 3-dimensional inverse problem for (1).

Theorem. Let \(q_1(x) \) and \(q_2(x) \) be a nonnegative continuous functions which belong to \(L^1 \cap L^\infty(\mathbb{R}^3) \). Let \(S(q_1) \) and \(S(q_2) \) denote the scattering operators associated with \(u_{tt} - \Delta u + m^2 u + q_1 u = 0 \) and \(v_{tt} - \Delta v + m^2 v + q_2 v = 0 \), respectively. Then \(S(q_1) = S(q_2) \) if and only if \(q_1 = q_2 \).

\(^1\)This research was supported by FNDCT and CEPG-UDRJ (Brazil).

Copyright © 1977, American Mathematical Society
respectively. If \(S(q_1) = S(q_2) \), then
\[
\lim_{\epsilon \to 0^+} \frac{\epsilon \| q_1 - q_2 \|}{\alpha(\epsilon q_1, \epsilon q_2)} = 0.
\]
Therefore, if \(q_1(x) \neq q_2(x) \) for some \(x \in \mathbb{R}^3 \) and the above limit is different from zero, then \(S(q_1) \neq S(q_2) \).

Here,
\[
\| q_1 - q_2 \| = \sup_{x \in \mathbb{R}^3} \sup_{r \in \mathbb{R}} \left| \int_{-\infty}^{\infty} R(x, t-r) \ast (q_1 - q_2) u_-(x, r) \, dr \right|
\]
where \(u_- \) denotes any incoming free solution of (1) (with \(q \equiv 0 \)), \(R \) the Riemann function of (1) with \(q \equiv 0 \), and \(\ast \) denotes spatial convolution, \(\alpha(q_1, q_2) \) is given by a constant times
\[
\left(\| q_1 \|_{1/3}^{1/6} \| q_1 \|_1^{1/6} + \| q_1 \|_{1/2} \| q_1 \|_1^{1/2} \right) \left(\| q_1 \|_{1/3}^{1/6} \| q_1 \|_1^{1/6} \right) + \left(\| q_2 \|_{1/3} \| q_2 \|_1^{1/6} + \| q_2 \|_{1/2} \| q_2 \|_1^{1/2} \right) \left(\| q_2 \|_{1/3} \| q_2 \|_1^{1/3} \right)
\]

ACKNOWLEDGEMENTS. We would like to thank the Department of Mathematics of the Federal University of Pernambuco (Recife) for financial support. Part of this research was completed there during a summer visit in 1976.

REFERENCES

