Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: J. E. Marsden and M. McCracken
Title: The Hopf bifurcation and its applications
Additional book information: Springer-Verlag, New York, 1976, xiii + 408 pp., $14.80.

References [Enhancements On Off] (What's this?)

  • 1. J. Alexander and J. York, Global bifurcations of periodic orbits, Ann. of Math. (to appear). MR 474406
  • 2. A. A. Andronov and A. A. Witt, Sur la théorie mathématiques des autooscillations, C. R. Acad. Sci. Paris 190 (1930), 256-258.
  • 3. S. Bochner and D. Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. (2) 46 (1945), 685-694. MR 7, 241. MR 14102
  • 4. N. Chafee, The bifurcation of one or more closed orbits from an equilibrium point of an autonomous differential system, J. Differential Equations 4 (1968), 661-679. MR 37 #5496. MR 229930
  • 5. M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal. 52 (1974), 161-180. MR 49 #5962. MR 341212
  • 6. E. Conway, D. Hoff and J. Smoller, Large-time behavior of systems of nonlinear reaction-diffusion equations, S.I.A.M. J. Appl. Math. (to appear).
  • 7. B. D. Hassard, Bifurcation of periodic solutions of the Hodgkin-Huxley model for the current-clamped squid giant axon, J. Theoret. Biology (to appear).
  • 8. B. D. Hassard and Y.-H. Wan, Bifurcation formulae derived from center manifold theory, J. Math. Anal. Appl. (to appear). MR 488152
  • 9. E. Hopf, Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems, Ber. Verh. Sächs. Acad. Wiss. Leipzig. Math.-Nat. KL. 95 (1943), no. 1, 3-22. MR 12, 501. MR 39141
  • 10. G. Iooss, Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d'evolution du type Navier-Sokes, Arch. Rational Mech. Anal. 47 (1972), 301-329. MR 49 #11075. MR 346350
  • 11. D. D. Joseph and D. H. Sattinger, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal. 45 (1972), 79-109. MR 52 #8682. MR 387844
  • 12. V. I. Judovich, The birth of proper oscillations in a fluid, Prikl. Math. Meh. 35 (1971), 638-655.
  • 13. A. Lindstedt, Differentialgleichungen der Störungstheorie. (8), Mém. Sci. St. Pétersbourgh 31 (1883).
  • 14. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
  • 15. M. Poincaré, Les méthodes nouvelles de la mécanique céleste. Vols. I, II, Gauthier-Villars et Fils, Paris, 1892 and 1893; Dover Publications, Inc., New York, 1957. MR 19, 414.
  • 16. D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167-192; 23 (1971), 343-344. MR 44 #1297; 45 #1478. MR 284067
  • 17. D. H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Math., vol. 309, Springer-Verlag, Berlin and New York, 1973. MR 463624
  • 18. G. G. Stokes, On the theory of oscillatory waves, Cambridge Trans. 8 (1847), 441-473 (Papers vol. I, 197-229).
  • 19. W. Velte, Über ein Stabilitätskriterium der Hydrodynamik, Arch. Rational Mech. Anal. 9 (1962), 9-20. MR 27 #5435. MR 155501
  • 20. R. F. Williams, The structure of Lorenz attractors (preprint). MR 556583

Review Information:

Reviewer: Nicholas D. Kazarinoff
Journal: Bull. Amer. Math. Soc. 83 (1977), 998-1004
DOI: https://doi.org/10.1090/S0002-9904-1977-14352-8
American Mathematical Society