Infinite dimensional compacta containing no $n$dimensional $\left( {n \geqslant 1} \right)$ subsets
Author:
John J. Walsh
Journal:
Bull. Amer. Math. Soc. 84 (1978), 137138
MSC (1970):
Primary 54F45, 55C10
DOI:
https://doi.org/10.1090/S000299041978144413
MathSciNet review:
0458435
Fulltext PDF
References  Similar Articles  Additional Information

[Al] P. S. Aleksandrov, Some results in the theory of topological spaces obtained within the last twentyfive years, Russian Math. Surveys 15 (1960), 2383. MR 119181

[A2] P. S. Aleksandrov, On some basic directions in general topology, Russian Math. Surveys, 19 (1964), 139. MR 172230

[Bi] R. H. Bing, A hereditarily infinitedimensional space, General Topology and its Relations to Modern Analysis and Algebra, II (Proc. Second Prague Topological Sympos., 1966), Academia, Prague, 1967, pp. 5662. MR 233336

[He1] D. W. Henderson, An infinitedimensional compactum with no positivedimensional compact subsets—a simpler construction, Amer. J. Math. 89 (1967), 105121.

[He2] D. W. Henderson, Each strongly infinitedimensional compactum contains a hereditarily infinitedimensional compact subset, Amer. J. Math. 89 (1967), 122123. MR 210073

[HW] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941. MR 6493

[Ko] G. Kozlowski, Images of ANR's, Trans. Amer. Math. Soc. (to appear).

[RSW] L. Rubin, R. Schori and J. Walsh, New Dimensiontheory techniques for constructing infinitedimensional examples (submitted).

[Za] A. V. Zarelua, Construction of strongly infinite dimensional compacta using rings of continuous functions, Soviet Math. Dokl. 15 (1974), 106110.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 54F45, 55C10
Retrieve articles in all journals with MSC (1970): 54F45, 55C10
Additional Information
DOI:
https://doi.org/10.1090/S000299041978144413