Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

The pure phases (harmonic functions) of generalized processes or: Mathematical physics of phase transitions and symmetry breaking


Author: J. Fröhlich
Journal: Bull. Amer. Math. Soc. 84 (1978), 165-193
MSC (1970): Primary 60G20, 81A18
MathSciNet review: 475121
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. Fröhlich, B. Simon, and Thomas Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Comm. Math. Phys. 50 (1976), no. 1, 79–95. MR 0421531 (54 #9530)
  • 2. Freeman J. Dyson, Elliott H. Lieb, and Barry Simon, Phase transitions in the quantum Heisenberg model, Phys. Rev. Lett. 37 (1976), no. 3, 120–123. MR 0432128 (55 #5119)
  • 3. J. Fröhlich and E. H. Lieb, Existence of phase transitions for anisotropic Heisenberg models, (to appear). See also Phys. Rev. Lett. 38 (1977), 440. (Note: The proofs of the results on quantum mechanical ferromagnets announced in references 2 and 3 contain a gap, as they were based on an incorrect lemma of 2.)
  • 4. J. Fröhlich, R. Israel, E. H. Lieb and B. Simon, papers concerning phase transitions in lattice systems with long range interactions (to appear).
  • 5. J. Fröhlich, Phase transitions, Goldstone bosons and topological superselection rules, Current problems in elementary particle and mathematical physics (Proc. XV. Internat. Universitätswochen Kernphysik, Univ. Graz, Schladming, 1976), Springer, Vienna, 1976, pp. 133–269. Acta Phys. Austriaca, Suppl. XV. MR 0523547 (58 #25680)
  • 6. J. Fröhlich and T. Spencer, Phase transitions in statistical mechanics and quantum field theory, New developments in quantum field theory and statistical mechanics (Proc. Cargèse Summer Inst., Cargèse, 1976) NATO Adv. Study Inst. Ser., Ser. B: Physics, vol. 26, Plenum, New York-London, 1977, pp. 79–130. MR 508189 (81j:82013)
  • 7. James Glimm, Arthur Jaffe, and Thomas Spencer, Phase transitions for 𝜑₂⁴ quantum fields, Comm. Math. Phys. 45 (1975), no. 3, 203–216. MR 0391797 (52 #12616)
  • 8. J. Glimm, Ann. Physics 101 (1976), 610; 101 (1976), 631.
  • 9. D. Ruelle, Statistical mechanics, Math. Phys. Monograph Ser., Benjamin, London and Amsterdam, 1969.
  • 10. D. Ruelle, in Méchanique Statistique et Théorie Quantique des Champs, Les Houches 1970, C. DeWitt and R. Stora, editors, Gordon and Breach, New York, 1971.
  • 11. A. Lenard (ed.), Statistical mechanics and mathematical problems, Springer-Verlag, Berlin-New York, 1973. Battelle Rencontres, Seattle, Wash., 1971; Lecture Notes in Physics, Vol. 20. MR 0395622 (52 #16416)
  • 12. Huzihiro Araki and P. D. F. Ion, On the equivalence of 𝐾𝑀𝑆 and Gibbs conditions for states of quantum lattice systems, Comm. Math. Phys. 35 (1974), 1–12. MR 0376049 (51 #12235)
  • 13. Huzihiro Araki, On the equivalence of the KMS condition and the variational principal for quantum lattice systems, Comm. Math. Phys. 38 (1974), 1–10. MR 0475531 (57 #15132)
  • 14. R. Israel, Tangents to the pressure as invariant equilibrium states in statistical mechanics of lattice systems, Thesis, Princeton Univ., 1975; Princeton Ser. in Physics, Princeton Univ. Press, Princeton, N.J. (to appear). See also Comm. Math. Phys. 43 (1975), 59, and D. Ruelle, On manifolds of phase coexistence, I.H.E.S. Preprint, 1975.
  • 15. R. L. Dobrushin, Functional Anal. Appl. 2 (1968, 302; see also Thcor. Probability Appl. 13 (1968), 197.
  • 16. Edward Nelson, Construction of quantum fields from Markoff fields, J. Functional Analysis 12 (1973), 97–112. MR 0343815 (49 #8555)
  • 17. Frank Spitzer, Markov random fields and Gibbs ensembles, Amer. Math. Monthly 78 (1971), 142–154. MR 0277036 (43 #2773)
  • 18. Robert B. Israel, High-temperature analyticity in classical lattice systems, Comm. Math. Phys. 50 (1976), no. 3, 245–257. MR 0446250 (56 #4578)
  • 18. D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267–278. MR 0234697 (38 #3013)
  • 19. J. Fröhlich, Lectures on equilibrium statistical mechanics, Princeton Univ., 1976/77 and paper in preparation.
  • 20. Huzihiro Araki, On representations of the canonical commutation relations, Comm. Math. Phys. 20 (1971), 9–25. MR 0290709 (44 #7889)
  • 21. Hermann Weyl, Symmetry, Princeton University Press, Princeton, N. J., 1952. MR 0048449 (14,16a)
  • 22. S. Coleman, Secret symmetry: An introduction to spontaneous symmetry breakdown and gauge fields, Proc. of the 1973 Internat. Summer School of Physics, Ettore Majorana, A. Zicchichi, editors.
  • 23. Jürg Fröhlich, Schwinger functions and their generating functionals. II. Markovian and generalized path space measures on 𝑆¹, Advances in Math. 23 (1977), no. 2, 119–180. MR 0436831 (55 #9768b)
  • 24. D. Ruelle, J. Math. Phys. 12 (1971), 901; Helv. Phys. Acta 45 (1972), 215.
  • 24. Jürg Fröhlich, The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperatures, Helv. Phys. Acta 48 (1975), no. 3, 355–363. MR 0406205 (53 #9997)
  • 25. M. Takesaki, in Statistical Mechanics and Mathematical Problems, see reference 11, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. See also: R. Haag, N. Hugenholtz and M. Winnink, Comm. Math. Phys. 5 (1967), 215.
  • 26. William Greenberg, Correlation functionals of infinite volume quantum spin systems, Comm. Math. Phys. 11 (1968/1969), 314–320. MR 0242452 (39 #3783)
  • 27. O. E. Lanford III, Cargèse Lectures, Gordon and Breach, New York, 1969.
  • 28. R. L. Dobrushin and S. B. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Comm. Math. Phys. 42 (1975), 31–40. MR 0424106 (54 #12074)
  • 29. J. Slawny, A family of equilibrium states relevant to low temperature behavior of spin 1/2 classical ferromagnets. Breaking of translation symmetry, Comm. Math. Phys. 35 (1974), 297–305. MR 0339739 (49 #4496)
  • 30. Joel L. Lebowitz and Anders Martin-Löf, On the uniqueness of the equilibrium state for Ising spin systems, Comm. Math. Phys. 25 (1972), 276–282. MR 0312854 (47 #1409)
  • 30. Joel L. Lebowitz, Coexistence of phases in Ising ferromagnets, J. Statist. Phys. 16 (1977), no. 6, 463–476. MR 0456178 (56 #14406)
  • 31. O. E. Lanford III, in Méchanique Statistique et Théorie Quantique des Champs, see reference 10.
  • 32. J. Fröhlich, unpublished notes, 1976.
  • 33. G. Hegerfeldt and C. Nappi, ZiF-Univ. of Bielefeld, preprint, 1976, Comm. Math. Phys. (to appear).
  • 34. E. Seiler and B. Simon, Nelson’s symmetry and all that in the Yukawa2 and (𝜑⁴)₃ field theories, Ann. Physics 97 (1976), no. 2, 470–518. MR 0438960 (55 #11862)
  • 35. Y. Choquet-Bruhat, Construction de solutions radiatives approchées des équations d’Einstein, Comm. Math. Phys. 12 (1969), 16–35 (French, with English summary). MR 0241087 (39 #2432)
  • 36. N. D. Mermin, J. Math. Phys. 8 (1967), 1061. See also M. Kac, Quart. Appl. Math. 30 (1972), 17; O. McBryan and T. Spencer, Comm. Math. Phys. 53 (1977), 299.
  • 37. J. Bricmont, J. R. Fontaine and L. J. Landau, On the uniqueness of the equilibrium state in plane rotators, Univ. Louvain, preprint UCL-IPT-77/03.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 60G20, 81A18

Retrieve articles in all journals with MSC (1970): 60G20, 81A18


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9904-1978-14445-0
PII: S 0002-9904(1978)14445-0