Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Holomorphic approximation to boundary value algebras


Author: Frank T. Birtel
Journal: Bull. Amer. Math. Soc. 84 (1978), 406-416
MSC (1970): Primary 32E25, 32E30; Secondary 32D10, 32D15, 32F15, 46J10
DOI: https://doi.org/10.1090/S0002-9904-1978-14480-2
MathSciNet review: 0460719
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Arens, The maximal ideals of certain function algebras, Pacific J. Math. 8 (1958), 641-648. MR 22 #8315. MR 117537
  • 2. F. Beatrous, Boundary value algebras, Dissertation, Tulane Univ., 1978.
  • 3. E. Bedford and J. E. Fornaess, Domains with pseudoconvex neighborhood systems (to appear). MR 499316
  • 4. F. T. Birtel, Algebras of holomorphic functions, Tulane Lecture Note Series, 1972, pp. 1-100.
  • 5. F. T. Birtel, Mergelyan approximation on holomorphic sets, Bull. Inst. Math. Acad. Sinica 3 (1975), 183-190. MR 447630
  • 6. F. T. Birtel, Some holomorphic function algebras, Papers from the Summer Gathering on Function Algebras, Matematisk Inst., Aarhus Univ., Aarhus, 1969, pp. 11-18. MR 254598
  • 7. E. M. Cirka, Approximation by holomorphic functions on smooth manifolds in C, Mat. Sb. 78 (1969), 101-123 = Math. USSR-Sb. 7 (1969), 95-113. MR 239121
  • 8. B. Cole and R. M. Range, A-measures on complex manifolds and some applications, J. Functional Analysis 11 (1972), 393-400. MR 340646
  • 9. K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. MR 437806
  • 10. K. Diederich and J. E. Fornaess, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225 (1947), 275-292. MR 430315
  • 11. K. Diederich and J. E. Fornaess, Pseudoconvex domains: Existence of stein neighborhoods, Duke Math. J. 44 (1977), 641-662. MR 447634
  • 12. K. Diederich and J. E. Fornaess, A strange bounded smooth domain of holomorphy, Bull. Amer. Math. Soc. 82 (1976), 74-76. MR 397019
  • 13. K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary (to appear). MR 477153
  • 14. H. Federer, Geometric measure theory. Springer-Verlag, New York, 1969. MR 257325
  • 15. J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. MR 422683
  • 16. J. E. Fornaess and A. Nagel, The Mergelyan property for weakly pseudoconvex domains, Manuscripta Math. 22 (1977), 199-208. MR 457779
  • 17. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. MR 410387
  • 18. M. Hakim and N. Sibony, Frontière de Shilov et spectre de $A(\bar D)$ pour les domains failblement pseudoconvexes, C. R. Acad. Sci., Paris 281 (1975), 959-962. MR 390287
  • 19. F. R. Harvey and H. B. Lawson, Boundaries of complex varieties. I, Ann. of Math. (2) 102 (1975), 223-290. MR 425173
  • 20. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78 (120) (1969), 611-632 = Math. USSR Sb. 7 (1969), 597-616. MR 249660
  • 21. G. M. Henkin and E. M. Cirka, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math. 5 (1976), 612-679. MR 477155
  • 22. L. Hörmander and J. Wermer, Uniform approximation on compact sets in C, Math. Scand. 23 (1968), 5-21. MR 254275
  • 23. E. Kallin, Fat polynomially convex sets, Function Algebras, Scott, Foresman, Chicago, 111., 1966, pp. 149-152. MR 33 #2828. MR 194618
  • 24. N. Kerzman, Hölder and L, Comm. Pure Appl. Math. 24 (1971), 301-379. MR 43 #7658. MR 281944
  • 25. I. Lieb, Ein Approximationssatz auf streng pseudokonvexen Gebieten, Math. Ann. 184 (1969), 56-60. MR 262540
  • 26. R. M. Range and Y. T. Siu, Uniform estimates for the $\bar \partial $-equation on domains with smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. MR 338450
  • 27. V. N. Senichkin, On the approximation of functions of several complex variables on fat compact subsets of C, Mat. Sb. 97 (139) (1975), no. 2, 278-300 = Math. USSR Sb. 26 (1975), 260-279. MR 397017
  • 28. N. Sibony, Approximation de fonctions à valeurs dans un Fréchet, par des functions holomorphes, Ann. Inst. Fourier (Grenoble) 24 (1974), 167-179. MR 51 #934. MR 364680
  • 29. N. Sibony, Multidimensional analytic structure in the spectrum of a uniform algebra, Lecture Notes in Math., no. 512, Springer-Verlag, New York, 1976 (also appeared in Spaces of analytic functions, Kristiansand, Norway, 1975). MR 632106
  • 30. N. Sibony, Un example de compact polynomialement convexe dans C2, Bull. Soc. Math. France 103 (1975), 141-147. MR 387659
  • 31. N. Sibony and J. Wermer, Generators for A (Ω), Trans. Amer. Math. Soc. 194 (1924), 103-114. MR 419838
  • 32. A. G. Vitushkin, Analytic capacity of sets in problems of approximation theory, Russian Math. Surveys 22 (1967), 139-201. MR 37 #5404. MR 229838
  • 33. B. Weinstock, Approximation by holomorphic functions on certain product sets in Cn, Pacific J. Math. 43 (1972), 811-822. MR 344523
  • 34. B. Weinstock, Some conditions for uniform H-convexity, Illinois J. Math. 19 (1975), 400-404. MR 53 #13639. MR 409887
  • 35. R. M. Range, Holomorphic approximation near strictly pseudoconvex boundary points, Math. Ann. 201 (1973), 9-17. MR 324074

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 32E25, 32E30, 32D10, 32D15, 32F15, 46J10

Retrieve articles in all journals with MSC (1970): 32E25, 32E30, 32D10, 32D15, 32F15, 46J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1978-14480-2

American Mathematical Society