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PSEUDOCONVEXTTY AND THE PROBLEM OF LEVI 

BY YUM-TONG SIU1 

The Levi problem is a very old problem in the theory of several complex 
variables and in its original form was solved long ago. However, over the 
years various extensions and generalizations of the Levi problem were pro
posed and investigated. Some of the more general forms of the Levi problem 
still remain unsolved. In the past few years there has been a lot of activity in 
this area. The purpose of this lecture is to give a survey of the developments 
in the theory of several complex variables which arise from the Levi problem. 
We will trace the developments from their historical roots and indicate the 
key ideas used in the proofs of these results wherever this can be done 
intelligibly without involving a lot of technical details. For the first couple of 
sections of this survey practically no knowledge of the theory of several 
complex variables is assumed on the part of the reader. However, as the 
survey progresses, an increasing amount of knowledge of the theory of several 
complex variables is assumed. 
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1. Domains of holomorphy. 
(1.1) One of the great differences between one complex variable and several 

complex variables is the concept of a domain of holomorphy. On any open 
subset G of C there is a holomorphic function which cannot be extended 
across any boundary point of G. This is not the case in several complex 
variables, as was first pointed out by Hartogs [43]. The simplest example is 
the domain 

Q - (A, X A1/2) u ((A, - A1/2) X A,) 

where A, is the open disc in C with center 0 and radius r. Any holomorphic 
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function ƒ on Q can be extended to a holomorphic function on A! X Aj, 
because the function 

i U W M*.w)<-<') 
is holomorphic on A, X A, and agrees with ƒ on A! X A1/2 by virtue of 
Cauchy's formula. 

Such an example calls for the introduction of the concept of a domain of 
holomorphy. A domain of holomorphy is a domain on which there exists a 
holomorphic function which cannot be extended to a larger domain. 

Hartogs [43] obtained the following necessary condition for a special kind 
of domain (now called Hartogs' domains) to be a domain of holomorphy. 

(1.2) THEOREM. Let D be a domain in C and R be a positive function on D 
such that the set 8 in C2 defined by zx E D and |z2| < R (*i) is a domain of 
holomorphy. Then — log R(zx) is a subharmonic function on D. 

We will indicate the idea of its proof a little bit later. The domain Q in the 
above example is a domain of the type described in Theorem (1.2), where 
R(zx) * 1 for \ < \zx\ < 1 and R(zx) * \ for \zx\ < \. In this case - log R 
is not subharmonic, because zx * 0 is a maximum. So the theorem gives an 
explanation for the example. 

The most obvious way to get a domain of holomorphy is to start with a 
holomorphic function on a domain and then use analytic continuation to 
continue the function to its maximum domain of definition, which, of course, 
is a domain of holomorphy. However, in this way one gets in general only a 
domain spread over C* instead of a domain in C1. Such a domain is also 
called a Riemann domain. More precisely, a Riemann domain is a complex 
manifold together with a locally biholomorphic holomorphic map into some 
C\ When one considers domains of holomorphy, it is natural to consider 
Riemann domains instead of just domains in C . 

Cartan and Thullen [13] gave the following characterization of domains of 
holomorphy. 

(1.3) THEOREM. The following conditions for a Riemann domain IT: Q - » C 
are equivalent. 

(i) Qis a domain of holomorphy. 
(ii) Q is holomorphically convex in the sense that, for every compact subset K 

of 12 the holomorphically convex hull K of K is compact, where K is defined as 
the set of all points xofQ such that \f(x)\ < the supremum \\f\\K of \f\ on K 
for every holomorphic function f on Î2. 

(iii) For every compact subset K of Q, the infimum of d on K equals the 
infimum of d on K, where for x E Q, d(x) is the largest positive number such 
that IT maps an open neighborhood of x biholomorphically onto the ball in C 
with center IT (X) and radius d(x). 

We indicate the idea of its proof only for the case Q c C*. 
For (ii) =» (i), we exhaust Ö by an increasing sequence of K„ with compact 

Kv. Take a discrete sequence {xy} in Q with x¥ £ K¥ which has every 
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boundary point of Q as an accumulation point. Construct ƒ * n„(l - f^Y 
for suitable positive integers ^ , where ƒ„ is a holomorphic function on Q with 
fÀxw) " 1 a nd \f9\ < 1 on Kv. Then ƒ has too high a vanishing order near the 
boundary of Î2 to be extended across any boundary point of Q. 

For (iii) =» (ii), one simply notes that K is bounded because the coordinate 
functions of C1 are holomorphic. 

(i) implies (iii), because, if ƒ is a holomorphic function on Q which cannot 
be holomorphically extended across any boundary point of Q and tf there is a 
boundary point x of Q whose distance y\ from a point y of K is < the 
infimum o of d on K, then for any n-tuple k the &th partial derivative 2)^ of 
ƒ, being a holomorphic function on Î2, satisfies 

\{Dkf){y)\<\\D%K< k\t-M\\f\\K. 
where t\ < t < a and Â  is the set of points having distance < t from K. By 
forming the power series of ƒ at y, one concludes that ƒ extends holomorphi
cally across JC, which is a contradiction. 

(1.4) Now we want to indicate the idea of the proof of Theorem (1.2). First 
we introduce a definition. A complex manifold M is said to satisfy the 
Kontinuitàtssatz if the following holds. For any sequence of maps <p„: A -» M 
(where A is th£ open unit disc in C) which are holomorphic on A_and 
continuous on A, if U„<p„(3A) is relatively compact in Af, then U„<p,,(A) is 
relatively compact in M. In the literature a manifold satisfying the Kontinui
tàtssatz is more commonly called pseudoconvex. We use our present terminol
ogy, because the adjective "pseudoconvex" is sometimes used to mean other 
things too in the literature. Because of the maximum modulus principle for 
holomorphic functions, it is obvious that a complex manifold which is 
holomorphically convex satisfies the Kontinuitàtssatz. 

We prove Theorem (1.2) by absurdity. If -log R is not subharmonic, then 
for some z? E D and some positive number r there exists a holomorphic 
polynomialp(zx) such that -log R < Rep on \zx — z?| • r and -log R(z^) 
« Rep(zi). Then the Kontinuitàtssatz property of Î2 is contradicted by the 
following sequence of discs indexed by v: 

*, H (z„(i-})«-'«*>) (h-*?M-

2. The original Levi problem. 
(2.1) Suppose a domain Î2 is given by r < 0, where r is a C2 function whose 

gradient is nowhere zero on the boundary of Ö. Ö is said to be pseudoconvex 
(respectively strictly pseudoconvex) at a boundary point x if the complex 
Hessian (32r(x)/3zl3^) is positive semidefinite (respectively positive definite) 
when restricted to the complex tangent space of 30. This property is indepen
dent of the choice of r. Î2 is said to be pseudoconvex (respectively strictly 
pseudoconvex) if it is pseudoconvex (strictly pseudoconvex) at its every 
boundary point. When one wants to emphasize that a domain is only 
pseudoconvex and not necessarily strictly pseudoconvex, one also says that it 
is weakly pseudoconvex. 

It is very easy to see that if 0 is strictly pseudoconvex at x then there exists 
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an open neighborhood U of JC in C and a holomorphic local coordinate 
system on U so that with respect to the new coordinate system U f) fl is 
strictly Euclidean convex at JC. 

(2.2) THEOREM (E. E. LEVI [56]). A domain of holomorphy Q with smooth 
boundary is pseudoconvex at every boundary point. 

The idea of the proof is as follows. Suppose the domain Q is not pseudo-
convex at a boundary point JC. Then one can find a plane H of complex 
dimension 2 containing JC such that H ç\Q has smooth boundary at JC and 
H - 12 is strictly pseudoconvex at JC as a domain in H. There is an open 
neighborhood U of JC in H such that H — Ö is strictly Euclidean convex at JC 
with respect to some coordinate system S of U. Hence in Î2 n U one can find 
a sequence of one-dimensional closed discs Dv with respect to S such that 
U pdDp is relatively compact in £2 n U but U VDV is not relatively compact in 
l / " n ö , contradicting the Kontinuitâtssatz for Q. 

(2.3) The original problem of Levi is to prove the converse that every 
domain Ü with smooth pseudoconvex boundary is a domain of holomorphy. 

The Levi problem was first solved by Oka. He did the case n = 2 in [67] 
and the general case in [68]. The case of a general n was also solved at the 
same time independently by Bremermann [8] and Norguet [66]. 

Before we state Oka's result in its general form, let us first observe that for 
the Ü in the Levi problem, —logrf is a plurisubharmonic function on Q, 
where d{x) is the distance from JC to the boundary of Q. To prove the 
observation, we assume the contrary. Then for some JC E Q and some com
plex line L through JC the Laplacian of the restriction of -logrf to L is 
negative at JC. We can assume that JC is the origin and L is given by 
z2 a . . . s zn = 0. From the power series expansion of —log d\L at JC, it 
follows that for some e > 0 and r > 0 there exists a holomorphic function 
f(z{) on |z,| < r such that - log d(x) = Re /(O) and 

- log d(zl9 0 , . . . , 0) < Ref(zx) - t\zxf 

for |z,| < r. Let y be a point of 9Î2 such that |JC — y\ = d(x). Consider the 
disc 

for |z,| < r. This disc is tangential to 3 Q at y and it is easy to verify that the 
restriction of the complex Hessian of r to the tangent space of this disc is 
negative, which is a contradiction. 

(2.4) THEOREM (OKA [68]). For a domain Q spread over C1, the following 
conditions are equivalent. 

(i) Î2 is a domain of holomorphy. 
(ii) Q satisfies the Kontinuitâtssatz. 
(iii) —log d is plurisubharmonic, where d is as defined in (1.3). 

It is easy to see the equivalence of (ii) and (iii). (iii)=>(ii) is simply a 
consequence of the maximum principle for subharmonic functions, (ii) => (iii) 
can be proved in more or less the same way as (1.2). To get (i) from (ii), Oka 
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used the Cauchy-Weil integral formula to obtain a solution of the Cousin 
problem. 

3. Stein manifolds. 
(3.1) For the domain Q in the original Levi problem, when fl is bounded, 

—log d is a plurisubharmonic function on 0 which is at the same time an 
exhaustion function on Q in the sense that for any c E R, { — log d < c) is a 
compact subset of Q. In general, - log d + \z\2 is an exhaustion function on 
Q. Moreover, — logd+ \z\2 is strictly plurisubharmonic, in the sense that 
locally when one adds to it any C2 function with sufficiently small second 
order partial derivatives, the result is still plurisubharmonic. From this point 
of view, a stronger version of the original Levi problem is to prove that every 
domain with a strictly plurisubharmonic exhaustion function is a domain of 
holomorphy. This was solved by Grauert [30] whose result is actually more 
general than this and deals with a general manifold instead of a domain. In 
the case of a general manifold, as an analog to a domain of holomorphy we 
have the concept of a Stein manifold. 

A complex manifold is said to be Stein if it is holomorphically convex and 
its global holomorphic functions separate points and give local coordinates at 
every point. A result of Bishop-Narasimhan-Remmert [3], [63], [71] says that a 
complex manifold is Stein if and only if it is a (closed) complex submanifold 
of some C^. 

(3.2) THEOREM (GRAUERT [30]). A complex manifold which admits a smooth 
strictly plurisubharmonic exhaustion function is Stein. 

Grauert's method is to use the bumping technique to prove the finite-di
mensionality of the first cohomology group of a sublevel set of the exhaustion 
function with coefficients in a coherent sheaf. 

Narasimhan [64] generalized Grauerfs result to the case of a complex 
space. 

(3.3) THEOREM (NARASIMHAN). A complex space which admits a continuous 
strictly plurisubharmonic exhaustion function is Stein. 

A complex space is the generalization of a complex manifold to allow 
singularities. More precisely, it is defined as follows. A subvariety of an open 
subset of a complex Euclidean space is a closed subset which locally is the set 
of common zeros of a finite number of holomorphic functions. A holomor
phic or a (strictly) plurisubharmonic function on a subvariety is a function 
which locally is the restriction of such a function on some open subset of the 
Euclidean space. A holomorphic map from a subvariety to another subvariety 
is locally the restriction of a holomorphic map from an open subset of a 
Euclidean space to another Euclidean space. A complex space is constructed 
by using biholomorphic maps to piece together subvarieties. A complex space 
is Stein if it is holomorphically convex and its global holomorphic functions 
separate points and give local embeddings at every point. 

A by-product of the results of Grauert and Narasimhan is the following. 

(3.4) THEOREM. If X is a Stein space, p is a continuous plurisubharmonic 
function on X and Y = {p < c} for some real number c, then the pair (X, Y) is 
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a Runge pair in the sense that every holomorphic function on Y can be 
approximated uniformly on compact subsets of Y by holomorphic functions on X. 

Grauert's characterization of Stein manifolds by the existence of smooth 
strictly plurisubharmonic functions can also be proved by using the L2 

estimates of 3. This approach is due toKohn [50], Andreotti-Vesentini [2], and 
Hörmander [48]. Roughly speaking, this 3 method is a generalization of 
Kodaira's vanishing theorem for compact manifolds to the case of manifolds 
with boundaries. Like the proof of Kodaira's vanishing theorem it depends on 
Bochner's formula for the Laplacian. 

4. Locally Stein open subsets. 
(4.1) Because of Oka's characterization of domains of holomorphy by the 

plurisubharmonicity of - log d, a domain $2 of Cn is Stein if and only if it is 
locally Stein in the sense that for every x E 3Q there exists an open neighbor
hood U of x in C such that U n Q is Stein. 

A natural question to raise is the relationship between Steinness and local 
Steinness for open subsets of a general complex space. For example, we have 
the following problem. 

(4.2) Problem. Is a locally Stein open subset of a Stein space Stein? 
This problem still remains unsolved. The main difficulty is, of course, the 

lack of an analog of —log d for the case of a complex space. In the manifold 
case, Docquier-Grauert [18] proved the following. 

(4.3) THEOREM. Every locally Stein open subset G of a Stein manifold M is 
Stein. 

Their proof consists in finding a holomorphic retraction m\ U-*M from a 
Stein open neighborhood U of M in some C^ in which M is an embedded 
closed complex submanifold. Since ir~~l(G) is locally Stein, it follows that 
TT~X(G) is Stein and G, being a submanifold of ir"\G\ is Stein. Such a 
holomorphic retraction cannot exist whenever there is any singularity. So this 
technique cannot be applied to the general case of a complex space. 

For complex spaces Andreotti-Narasimhan [1] proved the following partial 
result. 

(4.4) THEOREM. Let X be a complex space, S be its singular set, and G be a 
locally Stein open subset of X. If there exists an open neighborhood U of 
S n 3(7 in X such that U n G is Stein, then G is Stein. 

The main idea of their proof is as follows. One can assume that X is of pure 
dimension n. Find a finite number of holomorphic maps <nv\ X-+Cn so that 
S * D „ Z„ where Z„ is the singular set of mv, i.e. the set of points of X 
where m¥ is not locally biholomorphic. For z E G - Z„, define dp(x) to be the 
largest positive number so that mv maps an open neighborhood of x biholo-
morphically onto the ball of radius dv(x) centered at <nv(x\ Th e n ~"l°g d? *s 

plurisubharmonic on G - Z„, but approaches oo on Z„. To get a plurisub
harmonic function on G, we define the following plurisubharmonic function 

<p„= - log dv + log 2 \U\ 
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on G, where f (1 < /i < k,) are suitable holomorphic functions on X whose 
common zero set is Z„ (for example, if vï9..., vk are holomorphic vector 
fields on X generating the space of tangent vectors at every point of X — S, 
then one can take fvyL to be the value of the Jacobian determinant of IT, at 
2cjf| A • • • A *>,;)• Let p (respectively q) be a nonnegative smooth strictly 
plurisubharmonic exhaustion function on X (respectively U n G). Let 

i//=/?+max(<p,,,0) 

and let a be a smooth function on U with compact support which is 
identically 1 on an open neighborhood of S n 9G. Then one can find a 
smooth increasing convex function T such that T ° \p + oq is a strictly 
plurisubharmonic exhaustion function on G. 

(4.5) In both the proof of the theorem of Docquier-Grauert and that of 
Andreotti-Narasimhan —log of the Euclidean distance is used. Docquier-
Grauert used it injectively, so to speak; and Andreotti-Narasimhan used it 
projectively. 

It is natural to try to construct distance functions directly on Stein spaces 
to take the place of the Euclidean distance. There are two obvious choices. 
Unfortunately neither one works. 

The first one can be described as follows. Suppose there is a proper map IT 
from a Stein space X onto an open subset Q of C*. Let G be a locally Stein 
open subset of X. For x E G let dx(x) be the largest positive number such 
that for some open neighborhood U of x in G, 7r(£7) is the open ball in C1 

with center T̂(JC) and radius dx(x) and it maps U properly onto TT(E/). In 
general - log dx(x) is not plurisubharmonic even at the regular points of X. A 
simple counterexample is the following: X - C and TT: X-+C is given by 
TT(Z) * z2. G * the complement of (-oo, - 1] U [V2, oo) in X. Then 
—log^ assumes its maximum 0 at the point 1 of G. As a consequence, 
—log dx cannot be plurisubharmonic on G. 

The second obvious choice is the following. Suppose X is a subvariety of C 
and G is a locally Stein open subset of X. For JC E G, define d2(x) to be the 
largest positive number so that the intersection of X with the ball in C1 of 
center x and radius d2(x) is contained in G. Again, in general, —log d2 is not 
plurisubharmonic even at regular points of G. The following is a simple 
counterexample. X * C is embedded in C2 by q>(z) * (z, z2). G » X — 
{ - 1 } . Then - log d2 assumes a local maximum -log(5 V5 /4) at the point 1 
of G. As a consequence, - log d2 cannot be plurisubharmonic on G. 

(4.6) The recent work of Hirschowitz [45] sheds some light on the problem 
of finding distance functions whose —log is plurisubharmonic for locally 
Stein open subsets. He considered a complex manifold X on which there are 
enough global holomorphic vector fields to generate the tangent space of X at 
every point of X. Such a manifold is called inflnitesimally homogeneous. For 
this kind of manifold X one can find a finite number of holomorphic vector 
fields € „ . . . , % on X so that they generate the tangent space of X at every 
point of X. Suppose G is an open subset of X. For x E G, we define d(x) as 
follows. For a * (al9... 9aN) E CN, let q>Xi0(t) be the trajectory for the vector 
field Re 2 £ . i akvk whose initial point q>Xta(0) is JC. NOW d(x) is defined as the 
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largest positive number such that <pXta(t) E G for all 0 < f < d(x) and all a 
satisfying 2£«i|tf*|2 = 1. 

(4.7) THEOREM (HIRSCHOWITZ). If G satisfies the Kontinuitàtssatz, then 
—log d is plurisubharmonic on G. 

The main idea of his proof is as follows. The function d(x) can be 
alternatively described in the following way. From the existence theorem for 
ordinary differential equations, one can construct a holomorphic map a from 
an open subset Q of X XCN into X such that 

(i) a maps X XO biholomorphically onto X, 
(ii) (x X C^) n Q is connected for every x E X, 
(hi) for every x E X and a = (al9... 9aN) E C^, 

3 N 

-r- o(x, ta) « 2 0*t?*(a(x, ta)) 

for / E C with (*, to) E Q (where the left-hand side means, of course, the 
image of 3/3/ under the differential of the map / h» o(x, ta)). 

We can assume that £2 is the maximum open subset of X X Q with these 
properties. Now d(x) can be alternatively defined as the largest positive 
number such that (x, a) E o~\G) for every a belonging to the ball in C* of 
radius d(x) and center 0. From this alternative definition one easily sees (as 
in the proof of (1.2)) that —log d is plurisubharmonic on G, because o~l(G) 
satisfies the Kontinuitatssatz and we are measuring distance only along the 
Euclidean direction of 0. 

Hirschowitz's result was used by Brun to obtain the following result [9]. 

(4.8) THEOREM. Let IT: X -> S be a holomorphic fiber bundle whose base S is 
a Stein manifold and whose fiber F is a compact homogeneous manifold. Let A 
be a locally Stein open subset of X such that A C\ TT~\S) is Stein for every 
s E S. Then A is Stein. 

The main idea of his proof is as follows. By considering the holomorphic 
vector bundle over S whose fiber at s E S is the vector space of all 
holomorphic vector fields on v~l(s), we conclude that X is infinitesimally 
homogeneous and we can construct, by the method of Hirschowitz, a distance 
function d to the boundary of A. It suffices to prove that for every c E R, the 
open subset Ac 2» { — log d < c) is Stein. We need only produce a strictly 
plurisubharmonic function <p on Ac. Since A n ir~l(s) is Stein for every 
s E S9 we can cover S by an open cover {l^} such that Ac n v~l(Ut) is a 
relatively compact open subset of a Stein open subset Wt of X. Take a strictly 
plurisubharmonic function ifc on Wt and take a partition of unity {p,} 
subordinate to { Uê}. Then one can find a strictly plurisubharmonic function a 
on S such that o ° m + 2(ft ° tf)^ is strictly plurisubharmonic on Ac. 

The special case where F is a 1-dimensional torus was proved earlier by 
Matsugu [59]. 

(4.9) In general, - log of the distance function constructed by Hirschowitz 
is not strictly plurisubharmonic. So in general we cannot conclude that a 
locally Stein relatively compact open subset of an infinitesimally homoge
neous manifold is Stein. The following counterexample is due to Grauert [33]. 
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Let JC„ . . . , x2n be the coordinates of R2n and let L be the lattice of R2n 

generated by ev = ( 0 , . . . , 0, 1, 0 , . . . , 0), 1 < v < 2n9 where 1 is in the *>th 
place. Let IT: R2n -» R2n/L be the natural projection. Choose an R-linear map 
o: Cn -> R2n such that for some v E C , o(Cv) is contained in {xx = 0} and 
*r(o(Ct>)) is dense in TT{{XX = 0}). Let X = Cn/o~\L) and r:Cn^>X be the 
natural projection and G = r(o~l({\xx\ < |})). Then G is locally Stein, but 
every holomorphic function ƒ on G is constant, because, by applying Liou-
ville's theorem to the composite of C -» r(Ct>) and ƒ, we conclude that ƒ is 
constant on the submanifold T(O~1({XX = 0})) of real codimension 1 in G9 

which is possible only when ƒ is constant on G. In [57] Malgrange showed that 
one can construct Grauert's example in such a way that Hl(G, 6G) is not 
Hausdorff. 

The key ingredient in the preceding example of Grauert is the existence of 
the relatively compact curve r(Cv) in G. This holomorphic curve is a 
maximum integral curve for a holomorphic vector field on G. Hirschowitz 
[47] proved that under the assumption of the nonexistence of such a curve, a 
locally Stein relatively compact open subset of an infinitesimally homoge
neous manifold is Stein. More precisely, we state his result as follows. Let X 
be an infinitesimally homogeneous manifold. An interior integral curve is a 
holomorphic map y: C->X with relatively compact image whose tangent 
vectors belong to some holomorphic vector field on X. 

(4.10) THEOREM (HIRSCHOWITZ). If an infinitesimally homogeneous complex 
manifold X admits a continuous plurisubharmonic exhaustion function <p and 
admits no interior integral curve, then X is Stein. 

The main idea of his proof goes as follows. Since it suffices to show that 
each Xa := {<p < a} is Stein and since we can use local automorphisms 
defined by holomorphic vector fields to smooth out functions on compact 
subsets, we can assume without loss of generality that <p is C00. For any open 
subset Y of X, let C(Y) be the set of all tangent vectors 8 of Y such that the 
differential of every C00 plurisubharmonic function on Y is zero at 8. It 
suffices to show that C(Xa) is empty. For it follows from the emptiness of 
CXa+x that there exist a finite number of C00 plurisubharmonic functions 
^ i , . . . , \f/k on Xa+X such that <ty l 9 . . . , dfyk do not simultaneously vanish at 
any tangent vector of Xa. Then 

k 

(a-<p)_1+ 2 exp^. 
J-1 

is a strictly plurisubharmonic exhaustion function on Xa. Now, suppose 
80 e C(Xa). Let y: D-*Xa (where D is a domain in Q be the largest 
connected integral curve in Xa for a holomorphic vector field ü o n l such 
that 80 is a tangent vector to y(D). Let £ be the set of all z E D such that the 
tangent vector of y(D) at y(x) belongs to C(Xa). Obviously E is closed. We 
want to show that E is open. Take z E E. Let x = y(z) and Ô be the tangent 
vector of y(D) at JC. Let G be the 1-parameter group of local automorphisms 
defined by v. For g E G sufficiently close to the identity of G, g is defined on 
Xa and gx E Xa and g(Xa) c Xa+X. The image gô of 8 under g belongs to 


